МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ФГБОУ ВПО «ИжГТУ имени М.Т.Калашникова»)

ГЛАЗОВСКИЙ ИНЖЕНЕРНО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ (филиал) ФГБОУ ВПО «ИжГТУ имени М.Т. Калашникова»

РАБОЧАЯ ПРОГРАММА

по дисциплине: ФИЗИКА

Для направления подготовки: 15.03.05 – конструкторско-технологическое обеспечение маши-

ностроительных производств

по профилю: **технология машиностроения** Квалификация (степень) выпускника: **бакалавр**

Форма обучения: заочная

Вид учебной работы		Всего		Семестры	
Бид учестой рассты		часов	2	3	4
Контактная работа (всего)		46	20	14	12
В том числе:					
Лекции		20	8	6	6
Практические занятия		18	8	4	6
Семинары					
Лабораторные работы		8	4	4	
Самостоятельная работа (всего)		386	160	166	60
В том числе:					
Курсовой проект (работа)					
Расчетно-графические работы					
Реферат					
Другие виды самостоятельной работы		386	160	166	60
Вид промежуточной аттестации (зачет, экзам	іен)		Экз	Экз	Зач
Общая трудоемкость	час.	432	180	180	72
	3.e.	12	5	5	2

Кафедра «Автоматизированные системы управления».

Составитель Федоров Александр Борисович, ст. преподаватель

Рабочая программа составлена на основании ФГОС ВО по направлению подготовки «15.03.05 – конструкторско-технологическое обеспечение машиностроительных производств» и утверждена на заседании кафедры

Протокол от 17.05.2018 г. № 5

Заведующий кафедрой _____/ В.В.Беляев

СОГЛАСОВАНО

Председатель учебно-методической комиссии Глазовского инженерно-экономического института (филиала) ФГБОУ ВО «ИжГТУ имени М.Т.Калашникова»

_ Беляев В.В. _____2018 г.

Количество часов рабочей программы соответствует количеству часов рабочего учебного плана по направлению подготовки «15.03.05 – конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технология машиностроения»

АННОТАЦИЯ К ДИСЦИПЛИНЕ

Название ди плины	сци-	Физика		·						
Номер				Академически	тй год	2	018/2019	сел	<i>iecmp</i>	2, 3 и 4
Кафедра		86 ACY	Программа	15.03.05 Конст	рукторско-тех	нологи	ческое обес	печени	е машинос	
Составител	b	Федоров Александр Борисович, ст. преподаватель								
Цели и задачи дисциплины, основные мемы					ваться в потоке в в тех областях изических поняментальных или сследования. Шем решать иннтов начальных енки погрешномульса и энергии, стоянного тока; и механических плового излучеме Шредингера.					
Осиленая ди	Умения:				физика», «Яд ких явлений ипульса. Раб ввесие. Уравних электрич веханические дли. Периоди ктор. Термоя ение коэффи женных шар	перная физика». с применением ота. Мощность. нение состояния еский ток. Маг- и электромаг- ическая система ергия связи. Де- дерный синтез циента Пуассо- ов Изучение				
Основная ли	me-		• • •	вики. – М.: ВШ, Л. Курс физики.		окий пе	итт или и по	ина»	2015	
ратура Технические	cned-			л. курс физики. ля презентации						апов
ства	CPCO-	Демонстрацио			лэнции и дом(.110 1 pui		will III	матери	
Компетенци	ıu	•		ими при освоени	ии модуля					
Общекульту _р			•	ации и самообра		5).				
Общепрофесс нальные	Способность использовать основные закономерности, действующие в процессе изготовления машино строительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда (ОПК-1) Способность участвовать в разработке обобщенных вариантов решения проблем, связанных с машин строительными производствами, выборе оптимальных вариантов прогнозируемых последствий решена основе их анализа (ОПК-4)					с машино-				
Зачетных		Форма провед	<u> </u>		Практ. зан	ятия	Лабор. раб	боты	Самосто	оят. работа
единиц	12	- *	Всего час		80		32			240
контроля	Диф.зач / зач/ эк з Экз/Экз/	3	Условие зачета модуля	Получение оцо 3, 4, 5 или «зач	нки	ния с	а проведе- амостоят- й работы	проведе- Подготовка к Лек., ПЗ, ЛР, экз. и зач.		
Перечень мо	дулей,	знание которь	іх необходим <i>с</i>	о для изучения (дисциплины	M	атематика 1			

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Физика — фундаментальная естественнонаучная дисциплина, лежащая в основе современной техники. Физические законы лежат в основе общетехнических дисциплин: «Сопротивление материалов», «Теория механизмов и машин», «Детали машин», «Гидравлика», «Электротехника».

Дисциплина физика имеет также самостоятельное мировоззренческое и методологическое значение, так как углубляет и расширяет представление будущего специалиста о природе и технике, позволяет лучше понимать явления, рассматриваемые в других естественноначиных дисциплинах. Изучение физики способствует развитию логики, позволяет отрабатывать алгоритмы решения технических задач, дает возможность приобрести важные для инженера навыки по построению математических моделей физических явлений. А также позволяет закрепить навыки по решению математических задач, возникающих при исследовании физических явлений, в том числе, с использованием компьютерных методов решения.

Цель преподавания дисциплины - дать панораму наиболее универсальных методов, законов и моделей современной физики, продемонстрировать специфику рационального метода познания окружающего мира, сосредоточить усилия на формировании у студентов общего мировоззрения и развитии физического мышления.

Основные задачи курса:

- 1. Создание основ теоретической подготовки в области физики, позволяющей будущим инженерам ориентироваться в потоке научной и технической информации и обеспечивающей возможность использования новых физических принципов в тех областях техники, в которых они специализируются.
- 2. Формирование научного мышления, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования.
- 3. Усвоение основных физических явлений и законов классической и современной физики, методов физического исследования.
- 4. Выработка приемов и навыков решения конкретных задач из разных областей физики, помогающих в дальнейшем решать инженерные задачи.
- 5. Ознакомление с современной научной аппаратурой и электронно-вычислительной техникой, выработки у студентов начальных навыков проведения экспериментальных исследований различных физических явлений с применением ЭВМ и оценки погрешности измерений.

В результате изучения физики студент должен:

знать:

Основные характеристики механического движения; законы Ньютона; законы сохранения импульса, момента импульса и энергии, законы идеального газа; первое и второе начала термодинамики. Основные законы электростатики; законы постоянного тока; закон Ампера; Закон Био - Савара уравнения Максвелла теории электромагнитного поля; основные характеристики механических и электромагнитных колебаний и волн. Основные явления и законы геометрической и волновой оптики. Законы теплового излучения. Теория атома водорода по Бору. Корпускулярно-волновой дуализм. Основы квантовой механики. Уравнение Шредингера. Квантовые явления в кристаллах. Зонная теория. Строение атомного ядра. Ядерные реакции. Современная физическая картина мира.

уметь:

решать конкретные задачи из разделов «Механика», «Молекулярная физика и термодинамика», «Электричество и магнетизм», «Механические и электромагнитные колебания и волны», «Оптика», «Квантовая физика», «Ядерная физика».

владеть:

навыками проведения экспериментальных исследований различных физических явлений с применением ЭВМ и оценки погрешности измерений;

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина относится к базовой части цикла общих математических и естественнонаучных дисциплин.

Для изучения дисциплины студент должен:

знать: элементы линейной и векторной алгебры, дифференциальное и интегральное исчисление:

уметь применять полученные знания элементарной и высшей математики для решения конкретных задач физики;

владеть: навыками работы с учебной литературой, навыками оперирования векторными величинами, навыками решения типовых задач дифференциального и интегрального исчислений.

Изучение дисциплины базируется на знаниях, полученных студентами при изучении дисциплины математика 1.

Освоение физики необходимо как предшествующее для следующих дисциплин ООП: теоретическая механика, сопротивление материалов, теория механизмов и машин, детали машин, гидравлика.

3. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ:

3.1. Знания, приобретаемые в ходе изучения дисциплины

№ n/n	Знания
1.	основных законов, описывающих физические явления, а так же границ их при-
	менимости и применения законов в важнейших практических приложениях;
2.	основных физические величин и физические констант, их определение, смысл,
	способы и единицы их измерения;
3.	фундаментальных физических опытов и их роли в развитии науки;
4.	назначения и принципов действия важнейших физических приборов.

3.2. Умения, приобретаемые в ходе изучения дисциплины

№ n/n	Умения
1	объяснить основные наблюдаемые природные и техногенные явления и эф-
	фекты с позиций фундаментальных физических взаимодействий;
2	указать, какие законы описывают данное явление или эффект;
3	истолковывать смысл физических величин и понятий;
4	работать с приборами и оборудованием современной физической лаборато-
	рии;
5	использовать различные методики физических измерений и обработки экс-
	периментальных данных;
6	использовать методы адекватного физического и математического модели-
	рования, а также применять методы физико-математического анализа к ре-
	шению конкретных естественнонаучных и технических проблем;

3.3. Навыки, приобретаемые в ходе изучения дисциплины

№ n/n	Навыки
1	использования основных законов и принципов в важнейших практических при-
	ложениях;
2	применения основных методов физико-математического анализа для решения
	естественнонаучных задач;
3	обработки и интерпретирования результатов эксперимента.

3.4. Компетенции, приобретаемые в ходе изучения дисциплины

Компетенции	Знания	Умения	Навыки
Способность к самоорганизации и самообразованию (ОК - 5)			
	1, 2, 3, 4	1, 2, 3,	1, 2, 3
		4, 5, 6	
Способность использовать основные закономерности, дей-			
ствующие в процессе изготовления машиностроительных из-	1, 2, 4	2, 4, 5,	1, 2, 3
делий требуемого качества, заданного количества при		6	
наименьших затратах общественного труда (ОПК-1)			
Способность участвовать в разработке обобщенных вариан-			
тов решения проблем, связанных с машиностроительными			
производствами, выборе оптимальных вариантов прогнозиру-			
емых последствий решения на основе их анализа (ОПК-4)			

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

4.1. Содержание разделов курса.

№ n/n	Раздел дисциплины	Знания	Умения	Навыки
1 семе	естр			
1.	Введение Физика как наука. Наиболее общие понятия и теории. Методы физического исследования: опыт, гипотеза, эксперимент, теория. Математика и физика. Физика и естествознание. Философия и физика. Важнейшие этапы истории физики. Роль физики в развитии техники и влияние техники на развитие физики. Физика как культура моделирования. Физические модели. Компьютеры в современной физике. Роль физики в образовании. Общая структура и задачи курса физики. Роль измерения в физике. Единицы измерения и системы единиц. Основные единицы	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3
2.	Физические основы механики Предмет механики. Классическая и квантовая механика. Кинематика и динамика. Основные физические модели: частица (материальная точка), система частиц, абсолютно твердое тело, сплошная среда.			
2.1.	Понятие состояния в классической механике Пространственно-временные отношения. Система отчета. Скалярные и векторные физические величины. Основные кинематические характеристики движения частиц. О смысле производной и интеграла в приложении к физическим задачам. Скорость и ускорение частицы при криволинейном движении. Движение частицы по окружности. Угловая скорость и угловое ускорение. Поступательное и вращательное движения абсолютно твердого тела.		1, 2, 3, 4, 5, 6	1, 2, 3
2.2.	Уравнения движения	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.3.	Законы сохранения Закон сохранения импульса. Центр масс. Закон движения центра масс. Реактивное движение. Момент импульса. Момент силы. Закон сохранения момента импульса. Уравнение моментов. Движение в центральном поле. Работа. Мощность. Кинетическая энергия. Консервативные и неконсервативные силы. Потенциальная энергия и энергия взаимодействия. Внутренняя энергия. Закон сохранения энергии в механике. Общефизический закон сохранения энергии. Законы сохранения и симметрия пространства и времени.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3

	L			
2.4.	Инерциальные и неинерциальные системы отсчета Принцип относительности Галилея. Преобразования Галилея. Инварианты преобразования. Описание движения в неинерциальных системах отчета. Силы инерции.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.5.	Кинематика и динамика твердого тела Уравнения движения и равновесия твердого тела. Кинетическая энергия твердого тела, совершающего поступательное и вращательное движения. Уравнение движения твердого тела, вращающегося вокруг неподвижной оси. Момент инерции твердого тела относительно оси. Вращательный момент. Гироскоп.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.6.	Основы релятивистской механики. Принцип относительности в релятивистской механике. Преобразование Лоренца для координат и времени и их следствия. Релятивистский импульс. Инвариантность уравнений движения относительно преобразований Лоренца. Полная энергия частицы.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
3.	Молекулярная физика и термодинамика Динамические и статистические закономерности в физике. Термо- динамический и статистический методы.			
3.1.	Три начала термодинамики Макроскопическое состояние. Физические величины и состояния физических систем. Макроскопические параметры как средние значения. Тепловое равновесия. Модель идеального газа. Уравнение состояния идеального газа. Понятие о температуре. Нулевое начало термодинамики. Явления переноса. Диффузия. Теплопроводность. Коэффициент диффузии. Коэффициент теплопроводности. Диффузия в газах, жидкостях и твердых телах. Вязкость. Коэффициенты вязкости газов и жидкостей. Первое начало термодинамики. Внутренняя энергия. Обратимые и необратимые процессы. Энтропия. Второе начало термодинамики. Цикл Карно. Максимальный КПД тепловой машины.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
3.2.	Термодинамические функции состояния. Микроскопические параметры. Вероятность и флуктуации. Распределение Максвелла. Средняя кинетическая энергия частицы. Распределение Больцмана. Теплоемкость многоатомных газов. Ограниченность классической теории теплоемкости.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
3.3.	Порядок и беспорядок в природе Энтропия как количественная мера хаотичности. Принцип возрастания энтропии. Переход от порядка к беспорядку в состоянии теплового равновесия. Роль фазовых переходов.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
3	семестр			
1.	Электричество и магнетизм Предмет классической электродинамики. Электрический заряд и его дискретность. Идея близодействия. Границы применимости классической электродинамики.	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3
1.1.	Электростатика Закон Кулона. Напряженность электрического поля. Принцип суперпозиции. Электрический диполь. Основные уравнения электростатики в вакууме. Поток и циркуляция электростатического поля. Работа электростатического поля. Потенциал электростатического поля и его связь с напряженностью. Проводники и диэлектрики в электростатическом поле. Поверхностные заряды. Электростатическая защита. Коэффициенты емкости и взаимной емкости проводников. Конденсаторы. Емкость конденсаторов. Энергия взаимодействия электрических зарядов. Энергия системы заряженных проводников. Энергия заряженного конденсатора. Плотность энергии электростатического поля.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
1.2.	Постоянный электрический ток Условия существования тока. Проводники и изоляторы. Разрядка конденсатора. Законы Ома и Джоуля-Ленца в интегральной и дифференциальной форме. Сторонние силы. ЭДС. Источники ЭДС. Закон Ома для замкнутой цепи и участка цепи, содержащего источник ЭДС. Закон сохранения энергии для замкнутой цепи. Правила	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3

	Кирхгофа.			
1.3.	Магнитостатика. Сила Ампера. Магнитная индукция. Движение заряженных частиц в электрическом и магнитном полях. Основные уравнения магнитостатики в вакууме. Поток и циркуляция магнитного поля. Принцип суперпозиции для магнитного поля. Магнитное поля прямолинейного проводника с током. Закон Био-Савара. Виток с током в магнитном поле. Момент сил, действующий на виток с током в магнитном поле. Магнитный момент. Энергия витка с током во внешнем магнитном поле. Магнитной поле. Магнитное поле длинного соленоида. Коэффициенты индуктивности и взаимной индуктивности. Магнитное поле и магнитный момент кругового тока.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
1.4.	Электромагнитная индукция. Уравнения Максвелла Электромагнитная индукция. Правило Ленца. Явления самоиндукции при замыкании и размыкании электрической цепи. Магнитная энергия тока. Плотность энергии магнитного поля. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции. Вихревое электрическое поле. Ток смещения. Система уравнений Максвелла в интегральной и дифференциальной формах. Закон сохранения энергии для электромагнитного поля. Плотность энергии электромагнитного поля. Плотность потока энергии электромагнитного поля.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.	Колебания и волны Общие представления о колебательных и волновых процессах. Единый подход к описанию колебаний и волн различной физической природы.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.1.	Механические и электромагнитные колебания Гармонические колебания и их характеристики. Гармонический осциллятор. Электрический колебательный контур. Сложение колебаний. Затухающие и вынужденные колебания. Резонанс. Переменный электрический ток. Резонанс токов и напряжений.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.2.	Механические и электромагнитные волны Упругая гармоническая волна. Уравнения плоской и сферической волн. Групповая и фазовая скорости Эффект Доплера. Электромагнитные волны. Волновое уравнение. Свойства электромагнитных волн. Скорость распространения электромагнитных волн. Вектор Умова.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
4 семе	естр		I .	
1	Волновая оптика			
1.1	Интерференция волн Принцип суперпозиции для волн. Интерференция плоских и сферических монохроматических волн. Функция когерентности. Временное и спектральное рассмотрение интерференционных явлений. Интерферометры.	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3
1.2	Дифракция волн Принцип Гюйгенса-Френеля. Дифракция Френеля. Число Френеля. Дифракция Франсии, прямой щели и на множестве параллельных щелей. Дифракционная решетка. Спектральное разложение. Разрешающая способность спектральных приборов. Дифракционная решетка с синусоидальной пропускаемостью. Принцип голографии	1, 2, 3, 4	1, 2, 3, 4	1, 2, 3
2	Квантовая физика			
2.1	Тепловое излучение. Квантовые свойства излучения Основные понятия теории теплового излучения. Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Релея-Джинса. Формула Планка. Фотоэффект. Уравнение Эйнштейна. Эффект Комптона.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.2	Атом Резерфорда-Бора Планетарная модель атома. Постулаты Бора. Схема энергетических		1, 2, 3,	

	уровней.	1, 2, 3, 4,	4, 5, 6	1, 2, 3
2.3	Волновые свойства вещества Волны де-Бройля. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.4	Основы физики атомов и молекул Элементы квантовой теории водородоподобного атома. Спин и магнитный момент электрона. Периодическая система элементов Менделеева.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.5	Квантовые явления в твердых телах Энергетические зоны в кристалле. Уровень Ферми. Собственная и примесная проводимость полупроводников. Электронно-дырочный переход.	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3
2.6	Элементы физики атомного ядра Состав и характеристика ядра. Масса и энергия связи. радиоактивность. Ядерные реакции	1, 2, 3, 4,	1, 2, 3, 4, 5, 6	1, 2, 3

4.2. Наименование тем практических занятий, их содержание и объем в часах

No	№		Кол-во
п/п	раз-	Темы и содержание практических занятий	часов
	дела		14005
2 cem	естр		
1	1.1	Кинематика	1
		Радиус-вектор. Скорость. Ускорение. Тангенциальное и нормальное ускорение.	
		Угол поворота. Угловая скорость. Угловое ускорение.	
2	1.2	Динамика материальной точки	1
	1.0	Масса. Сила. Законы Ньютона. Момент силы.	
3	1.3	Законы сохранения	1
		Замкнутая механическая система. Законы сохранения импульса, момента им-	
	1	пульса и механической энергии. Диссипация энергии.	
4	1.4	Гравитационное поле. Неинерциальные системы отсчета	1
	<u> </u>	Закон всемирного тяготения. Сила инерции.	
5	1.5	Динамика твердого тела	1
		Момент инерции. Поступательное и вращательное движение твердого тела. За-	
	1	кон динамики вращательного движения.	
6	1.6	Элементы специальной теории относительности	1
		Принцип относительности. Преобразования Галилея и Лоренца. Связь массы и	
		энергии.	
7	2.1	Молекулярно-кинетическая теория идеальных газов	1
		Статистический и термодинамический методы. Внутренняя энергия. Число сте-	
		пеней свободы. Распределение Больцмана.	
8	2.2	Основы термодинамики	1
		Законы термодинамики. Цикл Карно. Энтропия.	
		Всего	8
3 cen	лестр		
1	1.1	Закон Кулона. Напряженность электрического поля	0,4
		Закон Кулона. Напряженность электрического поля. Принцип суперпозиции.	- ,
2	1.1	Основные закономерности электростатического поля	0,4
		Потенциал электростатического поля. Связь напряженности и потенциала. Цир-	,
		куляция вектора напряженности. Теорема Остроградского-Гаусса.	
3	1.1	Проводники в электрическом поле. Электрическое поле в диэлектриках	0,4
		Взаимодействие заряженных объектов. Диполь. Поле диполя. Поляризация ди-	- ,
		электриков. Условия на границе раздела диэлектриков.	
4	1.1	Электроемкость. Энергия электрического поля	0,4
		Конденсатор. Электроемкость. Энергия электрического поля. Плотность энергии.	- ,
5	1.2	Постоянный электрический ток	0,4
-	1	Законы Ома и Джоуля-Ленца в интегральной и дифференциальной форме.	٠,٠
6	1.3	Магнитное поле в вакууме	0,4
-	1.0	Индукция магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа.	~,.
		Циркуляция вектора магнитной индукции. Теорема Гаусса.	

7	1.3	Магнитное поле в веществе	0,4
		Магнитный момент. Закон полного тока для магнитного поля в веществе. Диа-	- ,
		пара- и ферромагнетики.	
8	1.4	Электромагнитная индукция. Уравнения Максвелла	0,4
		Явление электромагнитной индукции. Ток смещения. Уравнения Максвелла.	,
9	2.1	Механические колебания и волны	0,4
		Гармонические колебания. Период, частота, амплитуда, фаза колебаний. Энергия	,
		колебаний. Свободные и вынужденные колебания. Резонанс. Механические вол-	
		ны. Продольные, поперечные, стоячие волны. Групповая и фазовая скорость	
		волны.	
10	2.2	Электромагнитные колебания и волны	0,4
		Свободные и вынужденные колебания в электрическом колебательном контуре.	,
		Затухающие колебания. Декремент затухания. Резонанс токов и напряжений.	
		всего	4
4 ce	местр		
1	2.1	Интерференция света	0,5
		Когерентность. Условия интерференционных максимумов и минимумов. Кольца	,
		Ньютона	
2	2.2	Дифракция света	0,5
		Метод зон Френеля. Дифракция Фраунгофера. Дифракционная решетка.	,
3	2.3	Поляризация и дисперсия света	0,5
		Закон Брюстера. Закон Малюса.	,
4	2.4	Тепловое излучение. Квантовая природа излучения	0,5
		Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Релея-Джинса. Формула	,
		Планка. Фотоэффект. Уравнение Эйнштейна. Эффект Комптона.	
5	2.5	Физика атома. Элементы квантовой механики	0,5
		Уравнение де-Бройля. Соотношение неопределенностей Гейзенберга. Уравнение	
		Шредингера.	
6	2.6	Элементы квантовой статистики и физики твердого тела	0,5
		Распределение Бозе-Эйнштейна и Ферми-Дирака. Электронная и дырочная про-	,
		водимость. Энергия активации.	
7	2.7	Элементы физики атомного ядра и элементарных частиц	1
		Состав атомного ядра. Масса и энергия связи. Закон радиоактивного распада.	
		Ядерные реакции	
		всего	4

4.4. Наименование тем лабораторных занятий, их содержание и объем в часах

Ma	No॒		I/ 0 = 0
№	раз-	Темы и содержание лабораторных занятий	Кол-во
п/п	дела		часов
2 cen	иестр		
1	2.1	Изучение кинематики вращательного движения	1
		Измерение угла поворота и времени. Расчет угловой скорости и углового	
		ускорения. Построения графиков зависимости угловой скорости и углового	
		ускорения от времени.	
2	2.5	Изучение динамики вращательного движения	1
		Измерение момента инерции маятника Обербека и момента приложенных	
		сил. Вычисление углового ускорения маятника. Проверка основного закона	
		динамики вращательного движения.	
3	3.1	Изучение распределения Максвелла термоэлектронов по скоростям	1
		Измерение силы тока и напряжения на электронной лампе. Построение	
		кривой распределения Максвелла.	
4	3.2	Измерение коэффициента Пуассона	1
		Определение работы газа в адиабатическом процессе. Измерение коэффи-	
		циента Пуассона	
		Всего	4
3 cei	местр		
1	1.2	Изучение законов Кирхгофа.	1
-		Определение потенциалов различных точек электрической цепи. Расчет падения	
		напряжения и силы тока на различных участках цепи.	
2	1.2	Изучение компьютерного осциллографа.	1

		Изучение основных режимов работы компьютерного осциллографа. Измерение амплитуды, частоты и сдвига фаз по осциллограммам сигналов.	
3	2.1	Определение групповой и фазовой скорости звука. Измерение расстояния и времени прохождения этого расстояния звуковым сигналом. Определение групповой скорости. Измерение длины стоячей звуковой волны. определение фазовой скорости.	1
4	2.1	Изучение механического резонанса. Изучение свободных, затухающих и вынужденных колебаний. Изучение явления резонанса. Определение добротности и логарифмического декремента затухания.	1
		всего	4

5. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ЛИСПИПЛИНЫ:

а) Основная литература

- 1. Трофимова Т.Н. Курс физики.- М.: ВШ, 2015.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. М.: Издательский центр «Академия», 2015.

б) Дополнительная литература

- 1. Сивухин Д.В. Общий курс физики. М.: Наука, 1979-1989, т. I-V.
- 2. Савельев И.В. Курс общей физики, М: Наука, 1982-1984, т. 1-3.
- 3. Иродов И.Е. Задачи по общей физике.-М.: Наука, 1987.
- 4. Савельев И.В. Сборник вопросов и задач по общей физике.-М.: Наука, 1982.
- 5. Козел С.М., Рашба Э.И., Славатинский С.А. Сборник задач по физике. М.: Наука, 1987.

в) Электронные ресурсы:

- 1. Ландсберг, Г.С. Элементарный учебник физики: учебное пособие/ Ландсберг Г.С., ред. Ландсберг Г.С.— Электрон. текстовые данные.— М.: Физматлит, 2013.— 488 с.— Режим доступа: http://www.iprbookshop.ru/17540.— ЭБС «IPRbooks», по паролю
- 2. Ландсберг Г.С. Элементарный учебник физики: учебное пособие/ ред. Ландсберг Г.С.— Электрон. текстовые данные.— М.: Физматлит, 2010.— 612 с.— Режим доступа: http://www.iprbookshop.ru/17539.— ЭБС «IPRbooks», по паролю
- 3. Ландсберг,. Г.С. Элементарный учебник физики: учебное пособие/ под ред. Г.С. Ландсберга— Электрон. текстовые данные.— М.: Физматлит, 2011.— 664 с.— Режим доступа: http://www.iprbookshop.ru/12931.— ЭБС «IPRbooks», по паролю
- 4. Сивухин, Д.В. Общий курс физики: учебное пособие/ Сивухин Д.В.— Электрон. текстовые данные.— М.: Физматлит, 2011.— 560 с.— Режим доступа: http://www.iprbookshop.ru/12955.— ЭБС «IPRbooks», по паролю
- 5. Белолипецкий, С.Н. Задачник по физике: методический материал/ Белолипецкий С.Н., Еркович О.С., Казаковцева В.А., Цвецинская Т.С., ред. Еркович О.С.— Электрон. текстовые данные.— М.: Физматлит, 2012.— 368 с.— Режим доступа: http://www.iprbookshop.ru/17245.— ЭБС «IPRbooks», по паролю
- 6. Козлов, В.Ф. Курс общей физики в задачах: учебное пособие/ Козлов В.Ф., Маношкин Ю.В., Миллер А.Б., Петров Ю.В.— Электрон. текстовые данные.— М.: Физматлит, 2010.— 264 с.— Режим доступа: http://www.iprbookshop.ru/12945.— ЭБС «IPRbooks», по паролю

6. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ:

- 1. Компьютерный класс, оргтехника, доступ к сети Интернет (во время самостоятельной работы).
- 2. Современная проекционная аппаратура для демонстрации иллюстративных видеоматериалов на лекциях и практических занятиях.
- 3. Демонстрационные модели и приборы.