МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

УТВЕРЖДАЮ

Директор

М.А.Бабушкин

20 2 P

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика

направление подготовки: <u>15.03.05 – Конструкторско-технологическое обеспечение машиностроительных производств</u>

направленность (профиль): Технология машиностроения

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 11 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Федоров Александр Борисович

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 21.05.2022 г. № 5

Заведующий кафедрой

А.Г. Горбушин

21.05.2022 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технология машиностроения».

Протокол заседания учебно-методической комиссии от 25 мая 2022 г. № 2

Председатель учебно-методической комиссии ГИЭИ

А.Г. Горбушин

Руководитель образовательной программы

А.В. Овсянников

21.05.2022 г.

АННОТАЦИЯ К ДИСЦИПЛИНЕ

АННОТАЦИЯ К ДИСЦИПЛИНЕ						
Название дисциплины	Физика					
Направление (специальность)	15.03.05 Конструкторско-технологическое обеспечение ма-					
подготовки	шиностроительных производств.					
Направленность (про-	Технология машиностроения					
филь/программа/специа						
лизация)						
Место дисциплины	Обязательная часть Блока 1. Дисциплины (модули)					
Трудоемкость (з.е. / часы)	11 з.е. / 396 часов					
Цели изучения дисциплины	1. Дать панораму наиболее универсальных методов, законов					
	и моделей современной физики.					
	2. Продемонстрировать специфику рационального метода					
	познания окружающего мира, сосредоточить усилия на					
	формировании у студентов общего мировоззрения и разви-					
	тии физического мышления.					
Компетенции, формируемые	Знать: законы естественных и общеинженерных наук, ос-					
в результате освоения дисци-	новные закономерности, действующих в процессе констру-					
плины	ирования и проектирования машиностроительных изделий,					
	их влияние на качественные показатели и производствен-					
	ные затраты (ОПК 5.1)					
	Уметь: применять естественнонаучные знания для констру-					
	ирования и проектных расчетов изделий машиностроения,					
	определения производственных затрат (ОПК 5.2)					
	Владеть: навыками конструирования и проектных расчетов					
	изделий машиностроения, определения производственных					
	затрат (ОПК 5.3)					
Содержание дисциплины (ос-	Физические основы механики Уравнения движения За-					
новные разделы и темы)	коны сохранения Кинематика и динамика твердого тела Ос-					
	новы релятивистской механики					
	Молекулярная физика и термодинамика Три начала тер-					
	модинамики Термодинамические функции состояния Поря-					
	док и беспорядок в природе					
	Электричество и магнетизм Электростатика Постоянный					
	электрический ток. Магнитостатика Электромагнитная ин-					
	дукция. Уравнения Максвелла					
	Колебания и волны Механические и электромагнитные					
	колебания Механические и электромагнитные волны					
	Волновая оптика Интерференция волн Дифракция волн					
	Поляризация и дисперсия					
	Квантовая физика Тепловое излучение. Квантовые свой-					
	ства излучения Атом Резерфорда-Бора Волновые свойства					
	вещества Элементы физики атомного ядра Элементарные					
	частицы					
Форма промежуточной атте-	Экзамен/Зачет с оценкой					
стации						

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Физика — фундаментальная естественнонаучная дисциплина, лежащая в основе современной техники. Физические законы лежат в основе общетехнических дисциплин: «Сопротивление материалов», «Теория механизмов и машин», «Детали машин», «Гидравлика», «Электротехника».

Дисциплина физика имеет также самостоятельное мировоззренческое и методологическое значение, так как углубляет и расширяет представление будущего специалиста о природе и технике, позволяет лучше понимать явления, рассматриваемые в других естественноначиных дисциплинах. Изучение физики способствует развитию логики, позволяет отрабатывать алгоритмы решения технических задач, дает возможность приобрести важные для инженера навыки по построению математических моделей физических явлений. А также позволяет закрепить навыки по решению математических задач, возникающих при исследовании физических явлений, в том числе, с использованием компьютерных методов решения.

Цель преподавания дисциплины - дать панораму наиболее универсальных методов, законов и моделей современной физики, продемонстрировать специфику рационального метода познания окружающего мира, сосредоточить усилия на формировании у студентов общего мировоззрения и развитии физического мышления.

Основные задачи курса:

- 1. Создание основ теоретической подготовки в области физики, позволяющей будущим инженерам ориентироваться в потоке научной и технической информации и обеспечивающей возможность использования новых физических принципов в тех областях техники, в которых они специализируются.
- 2. Формирование научного мышления, в частности, правильного понимания границ применимости различных физических понятий, законов, теорий и умения оценивать степень достоверности результатов, полученных с помощью экспериментальных или математических методов исследования.
- 3. Усвоение основных физических явлений и законов классической и современной физики, методов физического исследования.
- 4. Выработка приемов и навыков решения конкретных задач из разных областей физики, помогающих в дальнейшем решать инженерные задачи.
- 5. Ознакомление с современной научной аппаратурой и электронно-вычислительной техникой, выработки у студентов начальных навыков проведения экспериментальных исследований различных физических явлений с применением ЭВМ и оценки погрешности измерений.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

В результате освоения дисциплины у студента должны быть сформированы:

Знания, приобретаемые в ходе изучения дисциплины

№ n/n	Знания			
1.	основных законов, описывающих физические явления, а так же границ их при-			
	менимости и применения законов в важнейших практических приложениях;			
2.	основных физические величин и физические констант, их определение, смысл,			
	способы и единицы их измерения;			
3.	фундаментальных физических опытов и их роли в развитии науки;			
4.	назначения и принципов действия важнейших физических приборов.			

Умения, приобретаемые в ходе изучения дисциплины

№ n/n	Умения
1	объяснить основные наблюдаемые природные и техногенные явления и эф-
	фекты с позиций фундаментальных физических взаимодействий;
2	указать, какие законы описывают данное явление или эффект;

3	истолковывать смысл физических величин и понятий;
4	работать с приборами и оборудованием современной физической лаборато-
	рии;
5	использовать различные методики физических измерений и обработки экс-
	периментальных данных;
6	использовать методы адекватного физического и математического модели-
	рования, а также применять методы физико-математического анализа к ре-
	шению конкретных естественнонаучных и технических проблем;

Навыки, приобретаемые в ходе изучения дисциплины

№ n/n	Навыки
1	использования основных законов и принципов в важнейших практических при-
	ложениях;
2	применения основных методов физико-математического анализа для решения
	естественнонаучных задач;
3	обработки и интерпретирования результатов эксперимента.

Компетенции, приобретаемые в ходе освоения дисциплины

	ции, приобретаемые в ходе освоения			
Компетенции	Индексы компетенций	Зна-	Уме-	Навы-
		ния	ния	ки
ОПК-5. Способен исполь-	ОПК 5.1 Знать: законы естественных и об-	1-4		
зовать основные законо-	ЩЕИНЖЕНЕРНЫХ НАУК, ОСНОВНЫЕ ЗАКОНО-			
мерности, действующие в	МЕРНОСТИ, ДЕЙСТВУЮЩИХ В ПРОЦЕССЕ КОН-			
	СТРУИРОВАНИЯ И ПРОЕКТИРОВАНИЯ МАШИНО-			
процессе изготовления ма-	СТРОИТЕЛЬНЫХ ИЗДЕЛИЙ, ИХ ВЛИЯНИЕ НА КА-			
шиностроительных изде-	ЧЕСТВЕННЫЕ ПОКАЗАТЕЛИ И ПРОИЗВОДСТВЕН-			
лий требуемого качества,	НЫЕ ЗАТРАТЫ			
заданного количества при				
наименьших затратах об-	ОПК 5.2 Уметь: применять естественно-		1-6	
<u> </u>	НАУЧНЫЕ ЗНАНИЯ ДЛЯ КОНСТРУИРОВАНИЯ И			
щественного труда;	ПРОЕКТНЫХ РАСЧЕТОВ ИЗДЕЛИЙ МАШИНО-			
	СТРОЕНИЯ, ОПРЕДЕЛЕНИЯ ПРОИЗВОДСТВЕННЫХ			
	3ATPAT			
	ОПК 5.3 Владеть: навыками конструиро-			1-3
	вания и проектных расчетов изделий ма-			
	шиностроения, определения производ-			
	ственных затрат			
	-			

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина относится к базовой части цикла общих математических и естественнонаучных дисциплин.

Для изучения дисциплины студент должен:

знать: элементы линейной и векторной алгебры, дифференциальное и интегральное исчисление;

уметь применять полученные знания элементарной и высшей математики для решения конкретных задач физики;

владеть: навыками работы с учебной литературой, навыками оперирования векторными величинами, навыками решения типовых задач дифференциального и интегрального исчислений.

Изучение дисциплины базируется на знаниях, полученных студентами при изучении дисциплины математика 1.

Освоение физики необходимо как предшествующее для следующих дисциплин ООП: теоретическая механика, сопротивление материалов, теория механизмов и машин, детали машин, гидравлика.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

4.1. Разделы дисциплины и виды занятий

№ п/п	Раздел дисциплины. Форма промежуточной аттестации	Всего часов на раздел	Семестр		а (в ча	сах) по т работ	доемкос видам уч ъ		Содержание само-
	(по семестрам)	Зсет на	ರ	лек	пр	тактная лаб	КЧА	CPC	боты
1 семе	естр			JICK	пр	лао	KIA		
1	2	3	4	5	6	7	8	9	10
1.	Физические основы меха-	64	1	16	12	8		28	Изучение теорети-
	ники								ческого материала,
									подготовка к защи-
									те лабораторной работы
2.	Молекулярная физика и	58	1	16	10	4		28	Изучение теоретиче-
2.	термодинамика	30		10	10			20	ского материала,
	1								подготовка к прак-
									тическому занятию
3.	Электричество и магнетизм	58	1	16	10	4		28	Изучение теоретиче-
									ского материала,
									подготовка к защи- те лабораторной
									работы
4.			1						Подготовка к эк-
									замену.
		36		_	_	_	0,4	35,6	Экзамен вы-
	Экзамен	30					0,4	33,0	ставляется с
									учетом резуль-
									татов текущего контроля успе-
									ваемости
	Всего за семестр	216	1	48	32	16	0,4	84	
	Контроль							35,6	
2 сем	±			1	1		T	T	T
5.	Колебания и волны	59	2	12	8	12		27	Изучение теорети-
									ческого материала, подготовка к защи-
									те лабораторной
									работы
6.	Волновая оптика	59	2	10	4	10		35	Изучение теоретиче-
									ского материала,
									подготовка к прак-
									тическому занятию
7.	Квантовая физика	60	2	10	4	10		36	Изучение теоретиче-
									ского материала,
									подготовка к защи-
									те лабораторной работы
8.		2	2				0,4	1,6	Подготовка к за-
	Зачет с оценкой						,	,-	чету.Зачет выстав-
									ляется с учетом
									результатов теку-
									щего контроля
	Всего за семестр	180	2	32	16	32	0,4	98	успеваемости
	Контроль	100			10	 ~~	, -	1,6	

4.2. Содержание разделов курса и формируемых в них компетенций

№	Раздел	Коды компе-	Знания	Умения	Навыки	Форма те-	
п/п	дисциплины	тенции и ин-	311411111	3 WICHIM	павыки	Павыки	кущего кон-
		дикаторов				троля	

						,
1.	Физические основы механики Уравнения движения Законы сохранения Кинематика и динамика твердого тела Основы релятивистской механики	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Тест.
2.	Молекулярная физика и термодинамика Три начала термодинамики Термодинамические функции состояния Порядок и беспорядок в природе	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Контрольная работа. Тест.
3.	Электричество и магнетизм Электростатика Постоянный электрический ток. Магнитостатика Электромагнитная индукция. Уравнения Максвелла	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Защита лабора- торной работы. Тест.
4.	Колебания и волны Меха- нические и электромагнит- ные колебания Механиче- ские и электромагнитные волны	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Защита лабораторной работы. Тест.
5.	Волновая оптика Интерференция волн Дифракция волн Поляризация и дисперсия	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Тест.
6.	Квантовая физика Тепловое излучение. Квантовые свойства излучения Атом Резерфорда-Бора Волновые свойства вещества Элементы физики атомного ядра Элементарные частицы	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Тест.

4.3. Наименование тем практических занятий, их содержание и объем в часах

№	№ pa3-	Темы и содержание практических занятий	Кол-во
п/п	дела	• •	часов
1 cen	естр		
1	1.1	Кинематика	4
		Радиус-вектор. Скорость. Ускорение. Тангенциальное и нормальное ускорение. Угол поворота. Угловая скорость. Угловое ускорение.	
2	1.2	Динамика материальной точки Масса. Сила. Законы Ньютона. Момент силы.	4
3	1.3	Законы сохранения Замкнутая механическая система. Законы сохранения импульса, момента им- пульса и механической энергии. Диссипация энергии.	4
4	1.4	Динамика твердого тела Момент инерции. Поступательное и вращательное движение твердого тела. Закон динамики вращательного движения.	4
5	2.1	Молекулярно-кинетическая теория идеальных газов Статистический и термодинамический методы. Внутренняя энергия. Число степеней свободы. Распределение Больцмана.	4
6	2.2	Основы термодинамики Законы термодинамики. Цикл Карно. Энтропия.	4
7	3.1	Основные закономерности электростатического поля Потенциал электростатического поля. Связь напряженности и потенциала. Циркуляция вектора напряженности. Теорема Остроградского-Гаусса.	4
8	3.2	Магнитное поле в вакууме Индукция магнитного поля. Принцип суперпозиции. Закон Био-Савара-Лапласа. Циркуляция вектора магнитной индукции. Теорема Гаусса.	4

		всего	32
2 ce	местр		
1	4.1	Механические колебания и волны Гармонические колебания. Период, частота, амплитуда, фаза колебаний. Энергия колебаний. Свободные и вынужденные колебания. Резонанс. Механические волны. Продольные, поперечные, стоячие волны. Групповая и фазовая скорость волны.	2
2	4.2	Электромагнитные колебания и волны Свободные и вынужденные колебания в электрическом колебательном контуре. Затухающие колебания. Декремент затухания. Резонанс токов и напряжений.	2
3	5.1	Интерференция света Когерентность. Условия интерференционных максимумов и минимумов. Кольца Ньютона	2
4	5.2	Дифракция света Метод зон Френеля. Дифракция Фраунгофера. Дифракционная решетка.	2
5	6.1	Тепловое излучение. Квантовая природа излучения Законы Кирхгофа, Стефана-Больцмана, Вина. Формула Релея-Джинса. Формула Планка. Фотоэффект. Уравнение Эйнштейна. Эффект Комптона.	2
6	6.3	Физика атома. Элементы квантовой механики Уравнение де-Бройля. Соотношение неопределенностей Гейзенберга. Уравнение Шредингера.	2
7	6. 4	Элементы квантовой статистики и физики твердого тела Распределение Бозе-Эйнштейна и Ферми-Дирака. Электронная и дырочная проводимость. Энергия активации.	2
8	6.5	Элементы физики атомного ядра и элементарных частиц Состав атомного ядра. Масса и энергия связи. Закон радиоактивного распада. Ядерные реакции	2
		всего	16

4.4. Наименование тем лабораторных занятий, их содержание и объем в часах

№ п/п	№ раз- дела	Темы и содержание лабораторных занятий	Кол-во часов
1 cen	естр		
1	1	Вводное занятие. Инструктаж по ТБ. Физические величины и их измерение. Прямое и косвенное измерение. Оценка погрешностей прямых и косвенных измерений. Правила приближенных вычислений.	4
2	2.1	Изучение кинематики вращательного движения Измерение угла поворота и времени. Расчет угловой скорости и углового ускорения. Построения графиков зависимости угловой скорости и углового ускорения от времени.	4
3	2.5	Изучение динамики вращательного движения Измерение момента инерции маятника Обербека и момента приложенных сил. Вычисление углового ускорения маятника. Проверка основного закона динамики вращательного движения.	4
4	3.2	Измерение коэффициента Пуассона Определение работы газа в адиабатическом процессе. Измерение коэффициента Пуассона	4
	JI	Всего	16
2 cen	иестр		
1	1.2	Изучение законов Кирхгофа. Определение потенциалов различных точек электрической цепи. Расчет падения напряжения и силы тока на различных участках цепи.	8
2	2.2	Изучение принципов радиосвязи. Измерение резонансной частоты контура. Снятие резонансных кривых. Измерение неизвестной емкости и индуктивности.	8
3	1.3	Определение точки Кюри ферромагнетика. Изучение зависимости магнитных свойств пермаллоя от температуры. Определение точки Кюри.	8
4	2.1	Определение групповой и фазовой скорости звука.	8

Измерение расстояния и времени прохождения этого расстояния звуковым сиглом. Определение групповой скорости. Измерение длины стоячей звуковой во определение фазовой скорости.			
,	всего	32	

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- контрольная работа;
- защита лабораторных работ;
- тест;
- экзамен;
- зачет с оценкой.

Примечание: оценочные материалы приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – экзамен, зачет с оценкой.

6. Учебно-методическое и информационное обеспечение дисциплины.

а) Основная литература

- 1. Трофимова Т.Н. Курс физики.- М.: ВШ, 2015.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. М.: Издательский центр «Академия», 2015.

б) Дополнительная литература

- 1. Сивухин Д.В. Общий курс физики. М.: Наука, 1979-1989, т. I-V.
- 2. Савельев И.В. Курс общей физики, М: Наука, 1982-1984, т. 1-3.
- 3. Иродов И.Е. Задачи по общей физике.-М.: Наука, 1987.
- 4. Савельев И.В. Сборник вопросов и задач по общей физике.-М.: Наука, 1982.
- 5. Козел С.М., Рашба Э.И., Славатинский С.А. Сборник задач по физике. М.: Наука, 1987.

в) Электронные ресурсы:

- 1. Ландсберг, Г.С. Элементарный учебник физики: учебное пособие/ Ландсберг Г.С., ред. Ландсберг Г.С. Электрон. текстовые данные.— М.: Физматлит, 2013.— 488 с.— Режим доступа: http://www.iprbookshop.ru/17540.— ЭБС «IPRbooks», по паролю
- 2. Ландсберг Г.С. Элементарный учебник физики: учебное пособие/ ред. Ландсберг Г.С.— Электрон. текстовые данные.— М.: Физматлит, 2010.— 612 с.— Режим доступа: http://www.iprbookshop.ru/17539.— ЭБС «IPRbooks», по паролю
- 3. Ландсберг,. Г.С. Элементарный учебник физики: учебное пособие/ под ред. Г.С. Ландсберга— Электрон. текстовые данные.— М.: Физматлит, 2011.— 664 с.— Режим доступа: http://www.iprbookshop.ru/12931.— ЭБС «IPRbooks», по паролю
- 4. Сивухин, Д.В. Общий курс физики: учебное пособие/ Сивухин Д.В.— Электрон. текстовые данные.— М.: Физматлит, 2015.— 560 с.— Режим доступа: http://www.iprbookshop.ru/12955.— ЭБС «IPRbooks», по паролю
- 5. Белолипецкий, С.Н. Задачник по физике: методический материал/ Белолипецкий С.Н., Еркович О.С., Казаковцева В.А., Цвецинская Т.С., ред. Еркович О.С.— Электрон. текстовые данные.— М.: Физматлит, 2012.— 368 с.— Режим доступа: http://www.iprbookshop.ru/17245.— ЭБС «IPRbooks», по паролю
- 6. Козлов, В.Ф. Курс общей физики в задачах: учебное пособие/ Козлов В.Ф., Маношкин Ю.В., Миллер А.Б., Петров Ю.В.— Электрон. текстовые данные.— М.: Физматлит, 2010.— 264 с.— Режим доступа: http://www.iprbookshop.ru/12945.— ЭБС «IPRbooks», по паролю

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДУЛЯ

$\mathcal{N}\underline{o}\mathcal{N}\underline{o}$	Наименование оборудованных учебных кабинетов, объектов для проведения занятий
Π/Π	с перечнем основного оборудования

1	Мультимедийные лекционные аудитории 301. Оборудование: доска, ноутбук, проектор, экран.
2	Учебные аудитории для проведения практических и лабораторных занятий, групповых и индивидуальных консультаций, оборудованные доской, столами, стульями (ауд. 307, 301, 409)
3	Учебные аудитории для организации и проведения самостоятельной работы студентов, оборудованные доской, компьютерами с возможностью подключения к сети «Интернет», столами, стульями (ауд 209, 204).

Лист утверждения рабочей программы дисциплины на учебный год

Рабочая программа дисциплины (модуля) утверждена на ведение учебного процесса в учебном году:

Учебный год	« СОГЛАСОВАНО»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2022- 2023	
2023- 2024	
2024 – 2025	

Приложение к рабочей программедисциплины (модуля)

МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательногоучреждения высшего образования

«Ижевский государственный технический университет имени М.Т. Калашникова»(ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

Оценочные средства

по дисциплине

«ФИЗИКА»

направление 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 11 зачетных единиц

1. Оценочные средства

Оценивание формирование компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

Для каждого индикатора достижения компетенций, указанного в разделе 2 РПД, приводятся: код и наименование индикатора, соответствующие ему результаты обучения (знания, умения и навыки) и формы контроля (таблицы 4.1 и 4.2).

Если при освоении дисциплины предусматривается проведение нескольких видов текущего контроля (несколько лабораторных работ, практических работ, контрольных работ и т.д.), необходимо ввести нумерацию работ и соотнести их с результатами обучения.

Оценочные средства должны соответствовать проверяемым результатам обучения.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ОПК 5.1 Знать: законы естественных и общеинженерных наук, основные закономерности, действующих в процессе конструирования и проектирования машиностроительных изделий, их влияние на качественные показатели и производственные затраты	31: ОСНОВНЫХ ЗАКОНОВ, ОПИСЫВАЮЩИХ ФИЗИЧЕСКИЕ ЯВЛЕНИЯ, А ТАК ЖЕ ГРАНИЦ ИХ ПРИМЕНИМОСТИ И ПРИМЕНЕНИЯ ЗАКОНОВ В ВАЖ-	Тест
2	естественнонаучные знания для конструирования и проектных расчетов изделий машиностроения, определения производственных затрат	У1: Объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; У2: указать, какие законы описывают данное явление или эффект; У3: истолковывать смыслфизических величин и понятий; У4: работать с приборами и оборудованием современной физической лаборатории; У5: использовать различные методики физических измерений и обработки экспериментальных данных; У6: использовать методы адекватного физического и математического моделиро-	Контрольная работа

		вания, а также применять методы физикоматематического анализа к решению конкретных естественнонаучных и технических проблем;	
3	ОПК 5.3 Владеть: навыками конструирования и проектных расчетов изделий машиностроения, определения производственных затрат	Н1: использования основных законов и принципов в важнейших практических приложениях; Н2: применения основных методов физикоматематического анализа для решения естественнонаучных задач; Н3: обработки и интерпретирования результатов эксперимента.	Защита лабораторных работ

ОСНОВНЫЕ ФОРМЫ ТЕКУЩЕГО КОНТРОЛЯ: ТЕСТ; КОНТРОЛЬНАЯ РАБОТА; ЗАЩИТА ЛАБОРАТОРНЫХ РАБОТ;

ФОРМЫ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: ЭКЗАМЕН, ЗАЧЕТ.

Типовые задания для оценивания формирования компетенций

Наименование: Экзамен **Представление в ФОС:**

Перечень вопросов для проведения экзамена:

- 1. Системы отсчета. Перемещение и скорость. Нормальное, тангенциальное и полное ускоре-ние.
- 2. Угловая скорость. Угловое ускорение. Связь линейной и угловой скорости. Равномерноедвижение по окружности. Период. Частота.
- 3. ОСНОВНАЯ ЗАДАЧА ДИНАМИКИ. ЗАКОН ИНЕРЦИИ. ПОНЯТИЕ ИНЕРЦИАЛЬНОЙ СИСТЕМЫ ОТСЧЕТА.
- 4. Уравнение движения. Масса. Третий закон ньютона.
- 5. ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА. ЦЕНТР ИНЕРЦИИ. ЗАКОН ДВИЖЕНИЯ ЦЕНТРА ИНЕРЦИИ.
- 6. МОМЕНТ ИМПУЛЬСА, МОМЕНТ СИЛЫ. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА.
- 7. РАБОТА, МОЩНОСТЬ, КИНЕТИЧЕСКАЯ ЭНЕРГИЯ, РАБОТА ПЕРЕМЕННОЙ СИЛЫ.
- 8. Консервативные и неконсервативные силы. Потенциальная энергия и энергия взаимодей-ствия. Закон сохранения энергии в механике.
- 9. Принцип относительности галилея. Преобразования галилея. Описание движения в неинер-циальных системах отсчета. Эквивалентность инертной и гравитационной масс.
- 10. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ В РЕЛЯТИВИСТСКОЙ МЕХАНИКЕ. ПРЕОБРАЗОВАНИЯ ЛОРЕНЦА. ПОЛНАЯЭНЕРГИЯ ЧАСТИЦЫ.
- 11. УРАВНЕНИЯ ДВИЖЕНИЯ ТВЕРДОГО ТЕЛА. КИНЕТИЧЕСКАЯ ЭНЕРГИЯ ТВЕРДОГО ТЕЛА, СОВЕРШАЮЩЕГО ПО-СТУПАТЕЛЬНОЕ И ВРАЩАТЕЛЬНОЕ ДВИЖЕНИЕ.
- 12. Уравнение движения твердого тела, вращающегося вокруг неподвижной оси. Момент инер-ции твердого тела относительно оси. Гироскоп.
- 13. Кинематическое описание движения жидкости. Уравнение бернулли. Вязкая жидкость. Силывнутреннего трения. Идеально упругое тело. Упругие деформации и напряжения. Закон гука. Пластические де-формации. Предел прочности.

- 14. Статистический и термодинамический методы. Основные положения молекулярно-кинетической теории.
- 15. ОСНОВНОЕ УРАВНЕНИЕ МОЛЕКУЛЯРНО КИНЕТИЧЕСКОЙ ТЕОРИИ.
- 16. МОДЕЛЬ ИДЕАЛЬНОГО ГАЗА. УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА. ПОНЯТИЕ О ТЕМПЕРАТУРЕ.
- 17. РАСПРЕДЕЛЕНИЕ МАКСВЕЛЛА МОЛЕКУЛ ПО СКОРОСТЯМ. НАИБОЛЕЕ ВЕРОЯТНАЯ СКОРОСТЬ.
- 18. Внутренняя энергия. Число степеней свободы.
- 19. ТЕРМОДИНАМИЧЕСКИЕ СИСТЕМЫ. ТЕПЛОВОЕ РАВНОВЕСИЕ. НУЛЕВОЕ И ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИ-КИ.
- 20. ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ИЗОПРОЦЕССЫ ИДЕАЛЬНОГО ГАЗА. АДИАБАТИЧЕСКИЙ ПРОЦЕСС.
- 21. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ. ЭНТРОПИЯ.
- 22. ЦИКЛ КАРНО. МАКСИМАЛЬНЫЙ КПД ТЕПЛОВОЙ МАШИНЫ.
- 23. ФАЗЫ И УСЛОВИЯ РАВНОВЕСИЯ ФАЗ. ФАЗОВЫЕ ПРЕВРАЩЕНИЯ. ИЗОТЕРМЫ ВАН-ДЕР-ВААЛЬСА.
- 24. Микроскопические параметры. Распределения максвелла. Распределение больцмана.
- 25. ЭЛЕКТРОСТАТИКА. ЗАКОН СОХРАНЕНИЯ ЗАРЯДА. ЗАКОН КУЛОНА. НАПРЯЖЕННОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГОПОЛЯ. ПРИНЦИП СУПЕРПОЗИЦИИ.
- 26. ОСНОВНЫЕ УРАВНЕНИЯ ЭЛЕКТРОСТАТИКИ В ВАКУУМЕ. ПОТОК И ЦИРКУЛЯЦИЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ.
- 27. ТЕОРЕМА ОСТРОГРАДСКОГО ГАУССА. ПРИМЕНЕНИЕ ТЕОРЕМЫ ОСТРОГРАДСКОГО ГАУССА К РАСЧЕТУЭЛЕКТРОСТАТИЧЕСКИХ ПОЛЕЙ.
- 28. Работа электростатического поля. Потенциал электростатического поля и его связь с напряженностью.
- 29. КОЭФФИЦИЕНТЫ ЕМКОСТИ И ВЗАИМНОЙ ЕМКОСТИ ПРОВОДНИКОВ. КОНДЕНСАТОРЫ. ЕМКОСТИ КОНДЕНСАТОРОВ.ПЛОСКИЙ КОНДЕНСАТОР С ДИЭЛЕКТРИКОМ. ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКА. ПОЛЯРИЗОВАННОСТЬ.
- 30. ЭЛЕКТРИЧЕСКОЕ СМЕЩЕНИЕ. ПЛОТНОСТЬ ЭНЕРГИИ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ДИЭЛЕКТРИКЕ.
- 31. Условия существования тока. Законы ома и джоуля ленца в локальной форме. Сторонние си-лы. Эдс. Источники эдс.
- 32. ЗАКОН ОМА ДЛЯ ЗАМКНУТОЙ ЦЕПИ И УЧАСТКА ЦЕПИ СОДЕРЖАЩЕГО ИСТОЧНИК ЭДС. ПРАВИЛА КИРХГОФА.
- 33. ЗАКОН АМПЕРА. ВЗАИМОДЕЙСТВИЕ ПАРАЛЛЕЛЬНЫХ ТОКОВ.
- 34. Сила лоренца. Магнитная индукция. Движение заряженных частиц в электрическом и магнитном полях.
- 35. ОСНОВНЫЕ УРАВНЕНИЯ МАГНИТОСТАТИКИ В ВАКУУМЕ. ПОТОК И ЦИРКУЛЯЦИЯ МАГНИТНОГО ПОЛЯ. ПРИНЦИП СУПЕРПОЗИЦИИ ДЛЯ МАГНИТНОГО ПОЛЯ.
- 36. МАГНИТНОЕ ПОЛЕ ПРЯМОЛИНЕЙНОГО ПРОВОДНИКА С ТОКОМ. ЗАКОН БИО САВАРА.
- 37. Виток с током. Магнитный момент. Энергия витка с током во внешнем магнитном поле. Магнитное поле длинного соленоида. Коэффициенты индуктивности и взаимной индуктивности.
- 38. МАГНИТНОЕ ПОЛЕ И МАГНИТНЫЙ МОМЕНТ КРУГОВОГО ТОКА.
- 39. МАГНЕТИКИ. ЭЛЕМЕНТЫ ТЕОРИИ ФЕРРОМАГНЕТИЗМА. ТОЧКА КЮРИ. ДОМЕННАЯ СТРУКТУРА.
- 40. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ. ПРАВИЛО ЛЕНЦА. ЯВЛЕНИЯ САМОИНДУКЦИИ ПРИ ЗАМЫКАНИИ И РАЗМЫКАНИИ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ.
- 41. ФАРАДЕЕВСКАЯ И МАКСВЕЛЛОВСКАЯ ТРАКТОВКИ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ. ВИХРЕВОЕЭЛЕКТРИЧЕСКОЕ ПОЛЕ.

- 42. МАГНИТНАЯ ЭНЕРГИЯ ТОКА. ПЛОТНОСТЬ ЭНЕРГИИ МАГНИТНОГО ПОЛЯ.
- 43. Длинный соленоид с магнетиком. Намагниченность. Основное уравнение магнитостатики в веществе. Плотность энергии постоянного магнитного поля в веществе.
- 44. ТОК СМЕЩЕНИЯ. СИСТЕМА УРАВНЕНИЙ МАКСВЕЛЛА В ИНТЕГРАЛЬНОЙ И ДИФФЕРЕНЦИАЛЬНОЙФОРМАХ.
- 45. ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ ДЛЯ МАГНИТНОГО ПОЛЯ. ПЛОТНОСТЬ ЭНЕРГИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ. ПЛОТНОСТЬ ПОТОКА ЭНЕРГИИ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ.
- 46. ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ВОЛНОВОЕ УРАВНЕНИЕ. СКОРОСТЬ РАСПРОСТРАНЕНИЯ ЭЛЕКТРОМАГНИТНЫХ ВОЛН.
- 47. ПРИНЦИП ОТНОСИТЕЛЬНОСТИ В ЭЛЕКТРОДИНАМИКЕ. ИНВАРИАНТНОСТЬ УРАВНЕНИЙ МАКСВЕЛЛА ОТНОСИТЕЛЬНО ПРЕОБРАЗОВАНИЙ ЛОРЕНЦА. ОТНОСИТЕЛЬНОСТЬ РАЗДЕЛЕНИЯ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ НА ЭЛЕК ТРИЧЕСКОЕ И МАГНИТНОЕ ПОЛЯ.

Критерии оценки:

Приведены в разделе 2

НАИМЕНОВАНИЕ: ЗАЧЕТ **П**РЕДСТАВЛЕНИЕ В **ФОС**:

ПЕРЕЧЕНЬ ВОПРОСОВ ДЛЯ ПРОВЕДЕНИЯ ЗАЧЕТА:

- 1. ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ И ИХ ХАРАКТЕРИСТИКИ. ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР. ПРУЖИННЫЙ, ФИ-ЗИЧЕСКИЙ И МАТЕМАТИЧЕСКИЙ МАЯТНИКИ.
- 2. Свободные гармонические колебания в колебательном контуре. Амплитуда, фаза, период ичастота колебаний.
- 3. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.Сложение взаимно перпендикулярных колебаний.
- 4. Свободные затухающие колебания (механические и электромагнитные). Автоколебания.
- 5. Вынужденные колебания (механические и электромагнитные). Резонанс.
- 6. Волновое движение. Продольные и поперечные волны. Плоская стационарная волна. Плоская синусоидальная волна. Длина волны. Волновой вектор и фазовая скорость. Волновое уравнение.
- 7. ПЛОСКИЕ ЭЛЕКТРОМАГНИТНЫЕ ВОЛНЫ. ПОЛЯРИЗАЦИЯ. ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЭЛЕКТРО-МАГНИТНЫХ ВОЛН. ВЕКТОР УМОВА ПОЙНТИНГА.
- 8. Интерференция волн. Влияние источника на интерференцию волн. Функция когерентности.
- 9. ВРЕМЕННОЕ И СПЕКТРАЛЬНОЕ РАССМОТРЕНИЕ ИНТЕРФЕРЕНЦИОННЫХ ЯВЛЕНИЙ. ИНТЕРФЕРОМЕТРЫ. ПО-НЯТИЕ ОБ ИНТЕРФЕРОМЕТРИИ.
- 10. Принцип Гюйгенса-Френеля. Дифракция Френеля. Число Френеля. Дифракция на круглом от-верстии.
- 11. Дифракция Фраунгофера. Дифракция на прямой щели и на множестве параллельных щелей. Дифракционная решетка. Разрешающая способность спектральных приборов.
- 12. Противоречия классической физики. Излучение черного тела. Гипотеза Планка. ЗаконыКирхгофа, Стефана-Больцмана, Вина. Формула Релея-Джинса.
- 13. Линейчатые спектры атомов. Правило частот Бора. Принцип соответствия. Опыты Франка иГерца.
- 14. ФОТОНЫ. ЭНЕРГИЯ ИМПУЛЬСА СВЕТОВЫХ КВАНТОВ. ЭФФЕКТ КОМПТОНА.
- 15. Гипотеза де Бройля. Дифракция электронов и нейтронов. Соотношение неопределенностей. Оценка основного состояния атома водорода.
- 16. ЗАДАНИЕ СОСТОЯНИЯ МИКРОЧАСТИЦ. ВОЛНОВАЯ ФУНКЦИЯ И ЕЕ СТАТИСТИЧЕСКИЙ СМЫСЛ. АМПЛИТУДАВЕРОЯТНОСТЕЙ. ВЕРОЯТНОСТЬ В КВАНТОВОЙ ТЕОРИИ.
- 17. УРАВНЕНИЕ ШРЕДИНГЕРА. ЧАСТИЦА В ОДНОМЕРНОЙ ПОТЕНЦИАЛЬНОЙ ЯМЕ.

- 18. АРМОНИЧЕСКИЙ КВАНТОВЫЙ ОСЦИЛЛЯТОР.
- 19. ПРОХОЖДЕНИЕ ЧАСТИЦЫ ПОД И НАД ПОТЕНЦИАЛЬНЫМ БАРЬЕРОМ.
- 20. ЧАСТИЦА В СФЕРИЧЕСКИ СИММЕТРИЧНОМ ПОЛЕ. АТОМ ВОДОРОДА. ВОДОРОДОПОДОБНЫЕ АТОМЫ.
- 21. Неразличимость одинаковых частиц в квантовой физике. Бозоны и фермионы. Принцип Паули.
- 22. Структура энергетических уровней в многоэлектронных атомах. Периодическая система Д.И. Менделеева.
- 23. Элементы зонной теории кристаллов. Заполнение зон: металлы, диэлектрики и полупроводники.
- 24. Проводники. Явление сверхпроводимости. Теория БКШ.
- 25. ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ. ПОНЯТИЕ О ДЫРОЧНОЙ ПРОВОДИМОСТИ. СОБСТВЕННЫЕ ИПРИМЕСНЫЕ ПОЛУПРОВОДНИКИ.
- 26. ПОНЯТИЕ О Р-N ПЕРЕХОДЕ. ДИОД. ТРАНЗИСТОР.
- 27. Элементы квантовой теории излучения. Спонтанное и вынужденное излучение фотонов. Лазеры.
- 28. МОДЕЛИ ЯДРА. РЕАКЦИЯ ЯДЕРНОГО ДЕЛЕНИЯ. ЦЕПНАЯ РЕАКЦИЯ ДЕЛЕНИЯ. ЯДЕРНЫЙ РЕАКТОР.

РАДИОАКТИВНОСТЬ. ЗАКОН РАДИОАКТИВНОГО РАСПАДА.

- 29. Дефект массы. Энергия связи. Ядерные реакции. Радиоактивные превращения ядер.
- 30. Термоядерный синтез. Энергия звезд. Управляемый термоядерный синтез. Иерархия структур материи. Частицы и античастицы. Стандартная модель элементарных частиц. Физический вакуум.
- 31. ФУНДАМЕНТАЛЬНЫЕ ВЗАИМОДЕЙСТВИЯ. АТОМЫ. МОЛЕКУЛЫ. КВАРКИ, ЛЕПТОНЫ, КВАНТЫ ФУНДАМЕНТАЛЬНЫХ ПОЛЕЙ. АДРОНЫ. ЯДРА АТОМОВ.

Критерии оценки:

Приведены в разделе 2

НАИМЕНОВАНИЕ: КОНТРОЛЬНАЯ РАБОТА **ПРЕЛСТАВЛЕНИЕ В ФОС:**

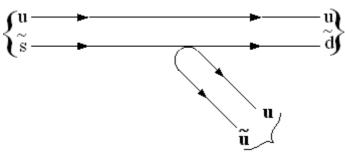
- 1. Прямолинейное движение материальной точки описывается законом $x = 0.5T^3 8T^2$. Найти экстремальное значение скорости v_1 точки. Какому моменту времени v_2 от начала движения оно соответствует? В какой момент времени v_2 скорость точки v_3 = 0?
- 2. АВТОМОБИЛЬ, ДВИЖУЩИЙСЯ СО СКОРОСТЬЮ $V=54\,$ км/ч, проходит закругление шоссе радиусом кривизны $R=375\,$ м. На повороте шофер тормозит машину, сообщая ей ускорение $AT=0,5\,$ м/с 2 . Найти модули нормального и полного ускорений автомобиля на повороте и угол между их направлениями.
- 3. ТЕЛО МАССОЙ M=0.5 КГ ДВИЖЕТСЯ ПРЯМОЛИНЕЙНО, ПРИЧЕМ ЗАВИСИМОСТЬ КООРДИНАТЫ X ТЕЛА ОТ ВРЕМЕНИ ОПИСЫВАЕТСЯ УРАВНЕНИЕМ $\mathbf{X}=A\mathbf{T}^2-B\mathbf{T}^3$, ГДЕ A==5 M/C², B=1 M/C³. НАЙТИ СИЛУ, ДЕЙСТВУЮЩУЮ НА ТЕЛО В КОНЦЕ ПЕРВОЙ СЕКУНДЫ ДВИЖЕНИЯ.
- 4. Сплошной цилиндр массой M = 0,1 кг катится без скольжения с постоянной скоростью v = 4 м/с. Определить кинетическую энергию цилиндра, время до его остановки, если на него действует сила трения $F_n = 0,1$ Н.
- 5. В БАЛЛОНЕ ЕМКОСТЬЮ V = 50 Л НАХОДИТСЯ СЖАТЫЙ ВОДОРОД ПРИ ТЕМПЕРАТУРЕ T = 27 °C. ПОСЛЕ ТОГО КАК ЧАСТЬ ВОЗДУХА ВЫПУСТИЛИ, ДАВЛЕНИЕ ПОНИЗИЛОСЬ НА $\Delta p = 1 \cdot 10^5$ ПА. ОПРЕДЕЛИТЬ МАССУ ВЫПУЩЕННОГО ВОДОРОДА. ПРОЦЕСС СЧИТАТЬ ИЗОТЕРМИЧЕСКИМ.
- 6. На какой высоте H концентрация молекул водорода составляет 50 % концентрации на уровне моря? Температуру считать постоянной и равной 273 К. Ускорение свободного падения постоянно и равно 9,8 м/с 2 .

- 7. Определить количество теплоты, сообщенное 88 г углекислого газа, если он был изобарически нагрет от 300 К до 350 К. Какую работу при этом может совершить газ и как изменится его внутренняя энергия?
- 8. Найти изменение энтропии при нагревании 2 кг воды от0 до 100 °C и последуюшем превращении ее в пар при той же температуре.

Критерии оценки:

Приведены в разделе 2

НАИМЕНОВАНИЕ: ТЕСТ **ПРЕДСТАВЛЕНИЕ В ФОС:**


Вопрос 1. Из 10^{10} атомов радиоактивного изотопа с периодом полураспада 20 мин через 40 мин не испытают превращение примерно...

- $1)2,5\cdot10^{5}$ ATOMOB
- 2) $2.5 \cdot 10^9$ ATOMOB
- 3) $5 \cdot 10^5$ ATOMOB
- 4) $7.5 \cdot 10^9$ ATOMOB

ВОПРОС 2. РЕАКЦИЯ $n \to p + e^+ + \nu_e$ НЕ МОЖЕТ ИДТИ ИЗ-ЗА НАРУШЕНИЯ ЗАКОНА СОХРАНЕНИЯ...

- 1) СПИНОВОГО МОМЕНТА ИМПУЛЬСА
- 2) ЛЕПТОННОГО ЗАРЯДА
- 3) БАРИОННОГО ЗАРЯДА
- 4) ЭЛЕКТРИЧЕСКОГО ЗАРЯДА

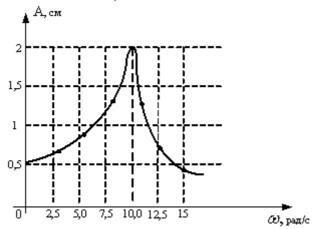
ВОПРОС 3. На РИСУНКЕ ПОКАЗАНА КВАРКОВАЯ ДИАГРАММА РАСПАДА K^+ – МЕЗОНА

ЭТА ДИАГРАММА СООТВЕТСТВУЕТ РЕАКЦИИ...

- 1) $K^+ \to \pi^+ + \pi^-$
- 2) $K^+ \to \pi^- + \pi^0$
- 3) $K^+ \to \pi^+ + \pi^0$
- 4) $K^{+} \to \kappa^{-} + \pi^{+}$

Вопрос 4. В процессе электромагнитного взаимодействия принимают участие...

- 1) нейтроны
- 2) нейтрино
- 3) электроны


ВОПРОС 5. СКЛАДЫВАЮТСЯ ДВА ГАРМОНИЧЕСКИХ КОЛЕБАНИЯ ОДНОГО НАПРАВЛЕНИЯ С ОДИНА-КОВЫМИ ЧАСТОТАМИ И РАВНЫМИ АМПЛИТУДАМИ A_0 . ПРИ РАЗНОСТИ ФАЗ $\Delta \varphi = \pi$ АМПЛИТУДА РЕЗУЛЬТИРУЮЩЕГО КОЛЕБАНИЯ РАВНА...

- 1)0
- 2) $2 A_0$
- 3) $A_0 \sqrt{3}$
- 4) $A_0 \sqrt{2}$

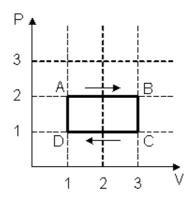
Вопрос 6. Уравнение плоской синусоидальной волны, распространяющейся вдоль оси ОХ со скоростью $500\,\mathrm{m/c}$, имеет вид $\xi=0.01\sin(10^3t-kx)$. Волновое число k равно...

- 1) 5 M^{-1}
- 2) 0.5 m^{-1}
- 3) $2 m^{-1}$

ВОПРОС 7. На рисунке представлена зависимость амплитуды вынужденных колебаний груза массой 0,1 кг на пружине от частоты внешней силы.

ПРИ МАЛОМ ЗАТУХАНИИ В СИСТЕМЕ КОЭФФИЦИЕНТ ЖЕСТКОСТИ ПРУЖИНЫ РАВЕН...

- 1) 10 H/M
- 2) 1000 H/M
- 3) 1 H/M
- 4) $100 \, \text{H/M}$

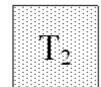

ВОПРОС 8. ЕСЛИ УВЕЛИЧИТЬ В 2 РАЗА ОБЪЕМНУЮ ПЛОТНОСТЬ ЭНЕРГИИ И ПРИ ЭТОМ УВЕЛИЧИТЬ В 2 РАЗА СКОРОСТЬ РАСПРОСТРАНЕНИЯ УПРУГИХ ВОЛН, ТО ПЛОТНОСТЬ ПОТОКА ЭНЕРГИИ...

- 1) УВЕЛИЧИТСЯ В 2 РАЗА
- 2) ОСТАНЕТСЯ НЕИЗМЕННОЙ
- 3) УВЕЛИЧИТСЯ В 4 РАЗА

Вопрос 9. Средняя кинетическая энергия молекулы идеального газа при температуре Т Равна $\varepsilon=\frac{i}{2}kT$. Здесь $i=n_n+n_{gp}+2n_k$, где n_n,n_{gp} и n_k - число степеней свободы поступательного, вращательного и колебательного движений молекулы. Для атомарного водорода число i равно...

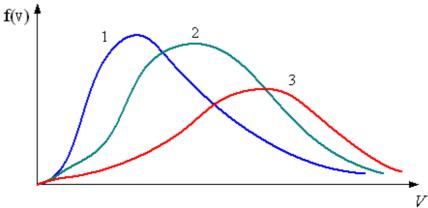
- 1)3
- 2)5
- 3)7
- 4) 1

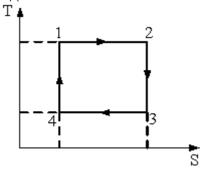
Вопрос 10. На (Р, V)-диаграмме изображен циклический процесс.


На участках

ВС и СО температура...

- 1) ПОВЫШАЕТСЯ
- 2) ПОНИЖАЕТСЯ
- 3) на ВС повышается, на СО понижается
- 4) на ВС понижается, на СО повышается

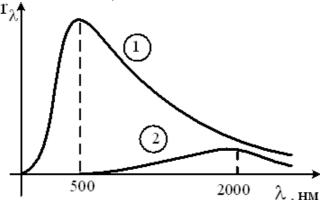

Вопрос 11. В трех одинаковых сосудах находится одинаковое количество газа, причем $T_1 > T_2 > T_3$



РАСПРЕДЕЛЕНИЕ СКОРОСТЕЙ МОЛЕКУЛ В СОСУДЕ С ТЕМПЕРАТУРОЙ T_3 БУДЕТ ОПИСЫВАТЬ КРИВАЯ...

- 1) 1
- 2)3
- 3)2

ВопроС 12. На рисунке изображен цикл Карно в координатах (T,S), где S-энтропия. Адиабатное сжатие происходит на этапе...


1)3-4

2)4-1

3)1-2

4)2-3

ВОПРОС 13. На рисунке показаны кривые зависимости спектральной плотности энергетической светимости абсолютно черного тела от длины волны при разных температурах. Если кривая 2 соответствует спектру излучения абсолютно черного тела при температуре 1450 K, то кривая 1 соответствует температуре (в K)...

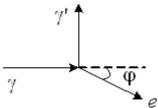
1) 5800

2) 2900

3) 725

4) 1933

ВОПРОС 14. УГОЛ ДИФРАКЦИИ В СПЕКТРЕ k -ГО ПОРЯДКА БОЛЬШЕ ДЛЯ...


1) желтых лучей

2) ЗЕЛЕНЫХ ЛУЧЕЙ

3) КРАСНЫХ ЛУЧЕЙ

4) ФИОЛЕТОВЫХ ЛУЧЕЙ

Вопрос 15. На рисунке показаны направления падающего фотона (γ) , рассеянного фотона (γ') и электрона отдачи (e). Угол рассеяния 90° , направление движения электрона отдачи составляет с направлением падающего фотона угол $\varphi=30^\circ$. Если импульс падающего фотона P_ϕ , то импульс электрона отдачи равен...

1) $\sqrt{3} P_{d}$

2) 1,5 P_{ϕ}

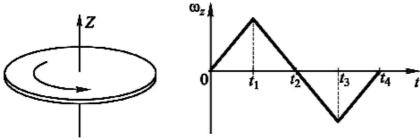
3) 1,5 $\sqrt{3} P_{\phi}$

 $3) \frac{2}{\sqrt{3}} P_{\phi}$


ВОПРОС 16. ЕСТЕСТВЕННЫЙ СВЕТ ПРОХОДИТ ЧЕРЕЗ СТЕКЛЯННУЮ ПЛАСТИНКУ И ЧАСТИЧНО ПОЛЯРИЗУЕТСЯ. ЕСЛИ НА ПУТИ СВЕТА ПОСТАВИТЬ ЕЩЕ ОДНУ ТАКУЮ ЖЕ ПЛАСТИНКУ, ТО СТЕПЕНЬ ПОЛЯРИЗАЦИИ СВЕТА...

1) УВЕЛИЧИТСЯ

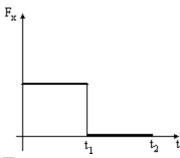
2) НЕ ИЗМЕНИТСЯ


3) УМЕНЬШИТСЯ

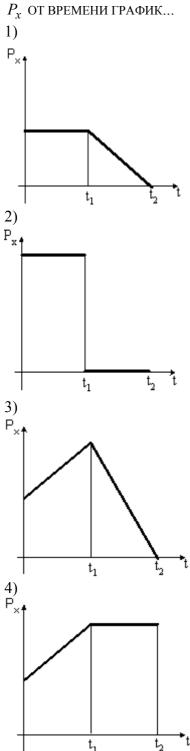
Вопрос 17. Три маленьких шарика расположены в вершинах правильного треугольника. Момент инерции этой системы относительно оси O_1 , лежащей в плоскости треугольника и проходящей через его центр и один из шариков, равен I_1 . Момент инерции этой же системы относительно оси O_2 , проходящей через два шарика - I_2 . Верно соотношение...

- 1) $I_1 = I_2$
- 2) $I_1 > I_2$
- 3) $I_1 < I_2$

ВОПРОС 18. ДИСК ВРАЩАЕТСЯ ВОКРУГ СВОЕЙ ОСИ, ИЗМЕНЯЯ ПРОЕКЦИЮ СВОЕЙ УГЛОВОЙ СКОРОСТИ $\omega_z(t)$ ТАК, КАК ПОКАЗАНО НА РИСУНКЕ. ВЕКТОР УГЛОВОЙ СКОРОСТИ $\vec{\omega}$ И ВЕКТОР УГЛОВОГО УСКОРЕНИЯ $\vec{\varepsilon}$ НАПРАВЛЕНЫ ПРОТИВ ОСИ Z В ИНТЕРВАЛЫ ВРЕМЕНИ...



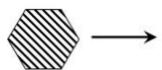
- 1) от t_1 до t_2
- 2) от 0 до t_1
- 3) от t_3 до t_4
- 4) от t_2 до t_3


Вопрос 19. На неподвижный бильярдный шар налетел другой такой же со скоростью $\nu=1\,\mathrm{M/c}$. После удара шары разлетелись под углом 90° так, что импульс одного шара $P_1=0$,3 $\kappa c\cdot m/c$, а другого $P_2=0$,4 $\kappa c\cdot m/c$. Массы шаров равны...

- 1) 1 кг
- 2) 0,5 кг
- 3) 0,1 кг
- 4) 0,2 KT

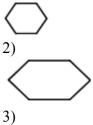
ВОПРОС 20. МАТЕРИАЛЬНАЯ ТОЧКА ДВИГАЛАСЬ ВДОЛЬ ОСИ ОХ РАВНОМЕРНО С НЕКОТОРОЙ СКОРОСТЬЮ V_x . Начиная с момента времени т = 0, на нее стала действовать сила F_x , график временной зависимости которой представлен на рисунке.

Правильно отражает зависимость величины проекции импульса материальной точки P_x от времени график...

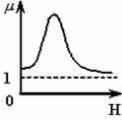


Вопрос 21. На частицу, находящуюся в начале координат, действует сила, вектор которой определяется выражением $\vec{F}=4\vec{i}+3\vec{j}$, где \vec{i} и \vec{j} единичные векторы декартовой

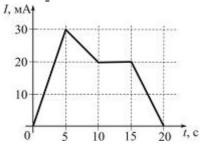
СИСТЕМЫ КООРДИНАТ. РАБОТА, СОВЕРШЕННАЯ ЭТОЙ СИЛОЙ ПРИ ПЕРЕМЕЩЕНИИ ЧАСТИЦЫ В ТОЧКУ С КООРДИНАТАМИ (4;3), РАВНА...


- 1) 12 Дж
- 2) 25 Дж
- 3) 9 Дж
- 4) 16 Дж

ВОПРОС 22. НА БОРТУ КОСМИЧЕСКОГО КОРАБЛЯ НАНЕСЕНА ЭМБЛЕМА В ВИДЕ ГЕОМЕТРИЧЕСКОЙ ФИГУРЫ.


ИЗ-ЗА РЕЛЯТИВИСТСКОГО СОКРАЩЕНИЯ ДЛИНЫ ЭТА ФИГУРА ИЗМЕНЯЕТ СВОЮ ФОРМУ. ЕСЛИ КОРАБЛЬ ДВИЖЕТСЯ В НАПРАВЛЕНИИ, УКАЗАННОМ НА РИСУНКЕ СТРЕЛКОЙ, СО СКОРОСТЬЮ, СРАВНИМОЙ СО СКОРОСТЬЮ СВЕТА, ТО В НЕПОДВИЖНОЙ СИСТЕМЕ ОТСЧЕТА ЭМБЛЕМА ПРИМЕТ ФОРМУ, УКАЗАННУЮ НА РИСУНКЕ...

1)


3)

ВОПРОС 23. На РИСУНКЕ ПОКАЗАНА ЗАВИСИМОСТЬ МАГНИТНОЙ ПРОНИЦАЕМОСТИ μ ОТ НАПРЯЖЕННОСТИ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ H ДЛЯ...

- 1) ФЕРРОМАГНЕТИКА
- 2) ЛЮБОГО МАГНЕТИКА
- 3) ПАРАМАГНЕТИКА
- 4) диамагнетика

Вопрос 24. На рисунке показана зависимость силы тока в электрической цепи от времени.

Заряд, прошедший по проводнику в интервале времени от 5 до 15 с, равен...

1) 450 мКл

- 2) 225 мКл
- 3) 250 мКл
- 4) 200 мКл

Вопрос 25. Полная система уравнений Максвелла для электромагнитного поля имеет вид:

$$\oint \vec{E}d\vec{l} = -\int_{(S)} \frac{\partial \vec{B}}{\partial t} d\vec{S}$$

$$\oint \vec{H}d\vec{l} = \int_{(S)} (\vec{j} + \frac{\partial \vec{D}}{\partial t}) d\vec{S}$$

$$\oint \vec{D}d\vec{S} = \int_{V} \rho dV$$

$$\oint \vec{B}d\vec{S} = 0$$
(S)

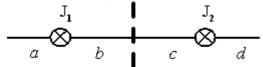
Следующая система уравнений:

$$\oint \vec{E}d\vec{l} = 0$$
(L)
$$\oint \vec{H}d\vec{l} = \iint_{(S)} \vec{J}d\vec{S}$$
(L)
$$\oint \vec{D}d\vec{S} = \iint_{V} \rho dV$$
(S)
$$\oint \vec{B}d\vec{S} = 0$$
(S)

СПРАВЕДЛИВА ДЛЯ...

- 1) ПЕРЕМЕННОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ ПРИ НАЛИЧИИ ЗАРЯЖЕННЫХ ТЕЛ И ТОКОВ ПРОВОДИМОСТИ
- 2) СТАЦИОНАРНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В ОТСУТСТВИЕ ЗАРЯЖЕННЫХ ТЕЛ
- 3) СТАЦИОНАРНЫХ ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ПОЛЕЙ
- 4) СТАЦИОНАРНОГО ЭЛЕКТРОМАГНИТНОГО ПОЛЯ В ОТСУТСТВИЕ ТОКОВ ПРОВОДИМОСТИ

Вопрос **26**. За время Δt =0,5 с на концах катушки наводится ЭДС самоиндукции E_{is} =25 В.


ЕСЛИ ПРИ ЭТОМ СИЛА ТОКА В ЦЕПИ ИЗМЕНИЛАСЬ ОТ I_1 =10 A до I_2 =5 A, ТО ИНДУКТИВНОСТЬ КАТУШКИ РАВНА...

- 1) 25 ΓH
- 2) 0,25 ΓH
- 3) 25 MΓH
- 4) 2,5 ΓH

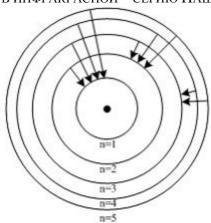
ВОПРОС 27. Сила взаимодействия двух отрицательных точечных зарядов, находящихся на расстоянии R друг от друга, равна F. Заряд одной из частиц увеличили по модулю в два раза. Чтобы сила взаимодействия не изменилась расстояние между зарядами надо изменить следующим образом:

- 1) уменьшить в $\sqrt{2}$
- 2) УВЕЛИЧИТЬ В $\sqrt{2}$ РАЗ
- 3) УМЕНЬШИТЬ В 2 РАЗА
- 4) УВЕЛИЧИТЬ В 4 РАЗА
- 5) УВЕЛИЧИТЬ В 2 РАЗА

ВОПРОС 28. На рисунке изображены сечения двух параллельных прямолинейных длинных проводников с одинаково направленными токами, причем $J_1 > J_2$. Индукция \vec{B} результирующего магнитного поля равна нулю некоторой точке интервала...

- 1)B
- 2) D
- 3) A
- 4) C

Вопрос 29. Нестационарным уравнением Шредингера является уравнение...

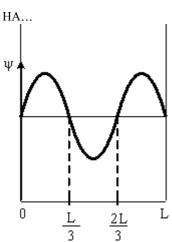

$$1) \frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2}E\psi = 0$$

2)
$$\frac{\hbar^2}{2m}\Delta\Psi + U(x,y,z,t)\Psi = i\hbar\frac{\partial\Psi}{\partial t}$$

3)
$$\Delta \Psi + \frac{2m}{\hbar^2} (E + \frac{Ze^2}{4\pi\varepsilon_0 r}) \Psi = 0$$

4)
$$\frac{d^2\psi}{dx^2} + \frac{2m}{\hbar^2} (E - \frac{ma_b^2 x^2}{2})\psi = 0$$

ВОПРОС 30. На рисунке изображены стационарные орбиты атома водорода согласно модели Бора, а также условно изображены переходы электрона с одной стационарной орбиты на другую, сопровождающиеся излучением кванта энергии. В ультрафиолетовой области спектра эти переходы дают серию Лаймана, в видимой – серию Бальмера, в инфракрасной – серию Пашена.


Наименьшей частоте кванта в серии Пашена соответствует переход...

- 1) $n = 2 \to n = 1$
- 2) $n = 5 \rightarrow n = 3$
- 3) $n = 4 \rightarrow n = 3$
- 4) $n = 5 \rightarrow n = 1$

ВОПРОС 31. ЕСЛИ ЧАСТИЦЫ ИМЕЮТ ОДИНАКОВУЮ СКОРОСТЬ, ТО НАИМЕНЬШЕЙ ДЛИНОЙ ВОЛНЫ ДЕ БРОЙЛЯ ОБЛАДАЕТ...

- 1) НЕЙТРОН
- 2) ЭЛЕКТРОН
- 3) протон
- 4) α -ЧАСТИЦА

Вопрос 32. Вероятность обнаружить электрон на участке (а,в) одномерного потенциального ящика с бесконечно высокими стенками вычисляется по формуле $W = \int\limits_a^b \omega \cdot dx$, где ω - плотность вероятности, определяемая Ψ -функцией, Если Ψ -функция имеет вид, указанный на рисунке, то вероятность обнаружить электрон на участке $\frac{L}{6} < x < \frac{L}{2}$ рав-

- 1) $\frac{1}{3}$
- 2) $\frac{5}{6}$
- 3) $\frac{1}{2}$
- 4) $\frac{2}{3}$

НАИМЕНОВАНИЕ: ЗАЩИТА ЛАБОРАТОРНЫХ РАБОТ

Представление в ФОС: задания и требования к выполнению представлены вметодических указаниях по дисциплине

Варианты заданий: задания и требования к выполнению представлены в методических указаниях по дисциплине

Критерии оценки:

Приведены в разделе 2

2. КРИТЕРИИ И ШКАЛЫ ОЦЕНИВАНИЯ

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не нижеминимального. Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения. Информация приводится согласно таблице 4.2 РПД. Минимальное и максимальное количество баллов устанавливается для каждой формы текущего контроля, максимально возможная сумма баллов определяется преподавателем, реализующим дисциплину, но не более 100 баллов.

Разделы дис-	Φ	Количество баллов	
циплины	Форма контроля	min	max
1	Тест.	5	10
2	Контрольная работа. Тест.	5,5	10,10
3	Защита лабораторной работы. Тест.	5,5	10,10
4	Защита лабораторной работы. Тест.	5,5	10,10
5	Тест.	5	10
6	Тест.	5	10

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов		
Лабораторнаяра- бота	Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, выводы, оформленный в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения материалом при защите лабораторной работы, даны правильные ответы не менее		
Наименование, обозначение	Показатели выставления минимального количества баллов		
	чем на 50% заданных вопросов		
Контрольнаярабо- та	Продемонстрирован удовлетворительный уровень владения материалом. Правильно решено не менее 50% заданий		
Тест	Правильно решено не менее 50% тестовых заданий		

Промежуточная аттестация по дисциплине проводится в форме зачета, экзамена. Итоговая оценка по дисциплине может быть выставлена на основе результатовтекущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	Свыше 60
«не зачтено»	Менее 50

Оценка	Набрано баллов
«отлично»	Свыше 90
«хорошо»	Свыше 75
«удовлетворительно»	Свыше 50
«неудовлетворительно»	Менее 50

EСЛИ СУММА НАБРАННЫХ БАЛЛОВ МЕНЕЕ 50- ОБУЧАЮЩИЙСЯ НЕ ДОПУСКАЕТСЯ ДОПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ.

ЕСЛИ СУММА БАЛЛОВ СОСТАВЛЯЕТ ОТ 50 ДО 90 БАЛЛОВ, ОБУЧАЮЩИЙСЯ ДОПУСКАЕТСЯ ДОЗАЧЕТА.