МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательногоучреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>Гидравлика</u>

направление подготовки: <u>15.03.05 – Конструкторско-технологическое</u> <u>обеспечениемашиностроительных производств</u>

направленность (профиль): **Технологии цифрового проектирования и производства в машиностроении**

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 2 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Горбушин А.Г., преподаватель

Рабочая программа составлена в соответствии с требованиями федерального государственногообразовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» и рассмотрена назаседании кафедры.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 22.05.2023 г. № 5

Заведующий кафедрой

22.05.2023 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технологии цифрового проектирования и производства в машиностроении».

Протокол заседания учебно-методической комиссии от 24 мая 2023 г. № 2

Председатель учебно-методической комиссии ГИЭИ

А.Г. Горбушин

Руководитель образовательной программы

А.В. Овсянников

22.05.2023 г.

Аннотация к дисциплине

Название дисциплины	Гидравлика							
Направление (специальность) подготовки	15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств							
Направленность (профиль/программа/специал изация)	Технологии цифрового проектирования и производства в машиностроении							
Место дисциплины	Обязательная часть Блока 1. Дисциплины (модули)							
Трудоемкость (з.е. / часы)	2 з.е. / 72 часа							
Цель изучения дисциплины	изучение теоретических основ переноса движения и энергии в жидкости и газе; ознакомление с методами гидравлических расчетов.							
Компетенции, формируемые в результате освоения дисциплины	ОПК-5 Способен использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда;							
Содержание дисциплины (основные разделы и темы)	Основные физические свойства жидкостей и газов. Законы и уравнения гидростатики. Кинематика жидкости. Основные законы и уравнения гидродинамики. Основы гидродинамического подобия. Определение потерь напора (удельной энергии). Практический расчет течений несжимаемой жидкости.							
Форма промежуточной аттестации	Зачет (5 семестр)							

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является изучение теоретических основ переноса движения и энергии в жидкости и газе; ознакомление с методами гидравлических расчетов.

Задачи дисциплины:

обеспечить освоение теоретического материала, основных приемов в постановке и решении практических задач, связанных с течениями жидкости и газа в элементах технологического оборудования, овладение типовыми методами гидравлических расчетов.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе изучения дисциплины

№ п/п 3	Знания				
1	основные законы статики и динамики газов и жидкости;				
2	научно-техническую информацию по законам статики и динамики газов и жидкости				

Умения, приобретаемые в ходе изучения дисциплины

№ п/п У	Умения
1	ставить и решать задачи, связанные с массо- и теплопереносом в жидких и газовых средах, применять полученные знания для конструирования и проектных расчетов
	изделий машиностроения
2	работать со справочной и нормативной документацией

Навыки, приобретаемые в ходе изучения дисциплины

№ п/п Н	Навыки					
1	решения теоретических и прикладных задач, конструирования, проектных расчетов изделий машиностроения					
2	проведения гидро- и газодинамического эксперимента					

Компетенции, приобретаемые в ходе изучения дисциплины

Интегральные компетенции	Индексы компетенций	Знания	Умения	Навыки
ОПК-5. Способен использовать основные закономерности, действующие в процессе машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда	ОПК-5.1 Знать: законы естественных наук, основные закономерности, действующие в процессе конструирования и проектирования, технологии изготовления машиностроительных изделий, их влияние на качественные показатели и производственные затраты	1,2		
	ОПК-5.2 Уметь: применять естественнонаучные знания для конструирования, проектных расчетов, технологии изготовления изделий машиностроения, определения производственных затрат		1,2	

ОПК-5.3	Владеть:	навыками		
конструирова	ния, проектных	расчетов,		
проектирован	т ки	ехнологии		1,2
изготовления		изделий		1,2
машиностроен	по , кин	ределения		
производствен	нных затрат			

3. Место дисциплины в структуре ООП:

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)» ООП Дисциплина изучается на 3 курсе в 5 семестре

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): «Математика»; «Физика»; «Теоретическая механика».

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): «Основы технологии машиностроения», «Оборудование машиностроительных производств».

4. Структура и содержание дисциплины

4.1. Структура дисциплин

№ п/п	Всего часов на раздел	Семестр				рудоемк э видам у гы		Содержание самостоятельной работы	
11/11	аттестации (по семестрам)	сег на ј	Ce			тактная СРС			
1	` <u>-</u> ′		4	лк	пр	лаб	КЧА		10
1	2	3	4	5	6	7	8	9	10
1	Основные физические свойства жидкостей и газов	9	5	2	2			5	Материалы в [1-6] подготовка к практическим занятиям, подготовка к контрольной работе №1
2	Законы и уравнения гидростатики	9	5	2	2			5	Материалы в [1-6,7], подготовка к практическим занятиям, выполнение контрольной работе №1
3	Кинематика жидкости. Основные законы и уравнения гидродинамики.	22	5	4	4			14	Материалы в [1- 6], подготовка к практическим занятиям, подготовка к контрольной работе №2
4	Основы гидродинамического подобия	5	5	2	2			1	Материалы в [1- 6], подготовка к контрольной работе №2
5	Определение потерь напора (удельной энергии). Практический расчет течений несжимаемой жидкости	25	5	6	6			13	Материалы в [1- 6,7], подготовка к практическим занятиям, выполнение контрольной работы №2
6	Зачет	2	5	-			0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости или проводится в тестовой форме
	Итого:	72	5	16	16		0,3	39,7	

4.2.Содержание разделов курса и формируемых компетенций

№ п/п	Раздел Дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма текущего контроля
1	Основные физические свойства жидкостей и газов	ОПК-5.1, ОПК-5.2 ОПК-5.3	1 1 1	1 2 1	1 1,2 1	Тест 1. Контрольная работа №1
2	Законы и уравнения гидростатики	ОПК-5.1, ОПК-5.2 ОПК-5.3	1 1 1	1 2 1	1 1,2 1	Тест 2. Контрольная работа №1
3	Кинематика жидкости. Основные законы и уравнения гидродинамики.	ОПК-5.1, ОПК-5.2 ОПК-5.3	1 1 1	1 2 1	1 1,2 1	Тест 3 Контрольная работа №2
4	Основы гидродинамического подобия	ОПК-5.1, ОПК-5.2 ОПК-5.3	1 1 1	1 2 1	1 1,2 1	Контрольная работа №2
5	Определение потерь напора (удельной энергии). Практический расчет течений несжимаемой жидкости	ОПК-5.1, ОПК-5.2 ОПК-5.3	1 1 1	1 2 1	1 1,2 1	Тест 4 Контрольная работа №2

4.3. Наименование тем лекций, их содержание и объем в часах

		ние тем лекции, их содержание и объем в часах	Т
No	№ раздела	Наименование лекций	Трудоем-
п/п	дисциплины		кость (час)
1	1	Предмет механики жидкости и газа. Капельные и газообразные жидкости, их отличия. Силы, действующие на жидкость и газ. Давление и его виды, единицы измерения давления. Основные физические свойства и характеристики жидкости и газа. Вязкость жидкости и газа. Закон Ньютона.	2
2	2	Гидростатика. Гидростатическое давление и его свойства. Закон Паскаля. Дифференциальное уравнение равновесия жидкости (уравнение Эйлера). Сила давления жидкости на плоскую и криволинейную стенку. Центр давления и тело давления. Эпюры избыточного давления. Закон Архимеда. Равновесие жидкости в движущемся сосуде.	2
3	3	Основы кинематики движущейся жидкости. Определения. Напорный и безнапорный потоки. Расход, местная и средняя скорость потока, их связь. Виды расхода. Уравнение сплошности (неразрывности) для жидкости и газа.	2
4	3	Гидродинамика. Дифференциальные уравнения движения идеальной жидкости и их интегрирование. Уравнение Бернулли для идеальной (невязкой) и вязкой жидкости, его физический смысл. Коэффициент Кориолиса. Формы записи уравнения Бернулли. Пьезометрический и гидравлический уклоны. Кавитация. Физическая картина. Определение предельной скорости жидкости. Уравнения Навье-Стокса и их реализация на ЭВМ.	2
5	4	Виды подобия. Числа и критерии гидродинамического подобия. Режимы течения жидкости в трубах, критерий Рейнольдса. Ламинарный и турбулентный режимы движения жидкости.	2
6-7	5	Гидравлические сопротивления, формулы для определения потерь напора и давления. Потери на местных гидравлических сопротивлениях. Формула Вейсбаха, частные (расчетные) случаи. Потери напора по длине. Формула Дарси-Вейсбаха, коэффициент гидравлического трения. Графики Никурадзе и ВТИ. Понятие о гидравлически гладких и шероховатых трубах. Пограничный слой. Формулы Блазиуса, Никурадзе, Конакова, Альтшуля. Гидравлический удар в трубах, формула Жуковского. Виды гидравлического удара.	4
8	5	Истечение жидкости через малое отверстие в тонкой стенке при постоянном напоре. Истечение под уровень и истечение через насадки, виды насадков.	2

№	№ раздела	Наименование лекций	Трудоем-
п/1	дисциплины		кость (час)
	Всего		16

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических занятий	Трудоем- кость (час)
1.	1	Гидростатическое давление. Единицы измерения давления. Основные физические свойства и характеристики жидкости и газа	2
2.	2	Основное уравнение гидростатики. Гидростатический напор. Давление жидкости на стенку. Тело давления.	2
3.	3	Уравнение Бернулли для элементарной струйки идеальной жидкости	2
4.	3	Уравнение Бернулли для установившегося движения вязкой жидкости.	2
5.	4	Теория подобия и размерности в процессах движения жидкости и газа.	2
6.	5	Потери на местных гидравлических сопротивлениях.	2
7.	5	Потери напора по длине. Определение коэффициента λ.	2
8.	5	Истечение через отверстия и насадки. Истечение под уровень.	2
	Всего		16

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

Лабораторные работы учебным планом не предусмотрены

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- контроль решения задач на занятии;
- тесты 1-4;
- контрольные работы №1 и №2.

Примечание: Оценочные средства (типовые варианты задач и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет

6. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература

- 1. Новикова, А. М. Гидравлика [Электронный ресурс] : учебное пособие / А. М. Новикова, А. В. Кудрявцев, И. И. Иваненко. Электрон. текстовые данные. Санкт-Петербург : Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2014. 140 с. 978-5-9227-0538-7. Режим доступа: http://www.iprbookshop.ru/58534.html Режим доступа: для авторизир. пользователей
- 2. Жуков, Н. П. Гидрогазодинамика. Часть 1. Гидравлика [Электронный ресурс] : учебное пособие / Н. П. Жуков, Н. Ф. Майникова. Электрон. текстовые данные. Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2015. 140 с. 978-5-8265-1434-4. Режим доступа: http://www.iprbookshop.ru/64075.html Режим доступа: для авторизир. пользователей

б) Дополнительная литература

- 3. Удовин, В. Г. Гидравлика [Электронный ресурс] : учебное пособие / В. Г. Удовин, И. А. Оденбах. Электрон. текстовые данные. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2014. 132 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/33625.html Режим доступа: для авторизир. пользователей
- 4. Андреев, В. В. Теплотехника [Электронный ресурс] : учебник / В. В. Андреев, В. А. Лебедев, Б. И. Спесивцев ; под ред. В. А. Лебедев. Электрон. текстовые данные. СПб. : Национальный

минерально-сырьевой университет «Горный», 2016. — 288 с. — 978-5-94211-754-2. — Режим доступа: http://www.iprbookshop.ru/71706.html — Режим доступа: для авторизир. Пользователей

в) методические указания

- 5. Исаков, В.Г. Гидравлика. Конспект лекций: Учебно-методическое пособие к лекциям, практическим занятиям, лабораторным работам и самостоятельной работе для студентов всех форм обучения при изучении дисциплины «Гидравлика» /Сост. В.Г. Исаков Ижевск: ИжГТУ имени М.Т. Калашникова, 200 с. [Электронный ресурс]: Регистрационный номер 44/37-ИЭиЖКХ.
- 6. Электронный курс «Гидравлика» в СЭО ИжГТУ /В.Г. Исаков Ижевск: ИжГТУ имени М.Т. Калашникова [Электронный ресурс]: https://ee.istu.ru/course/view.php?id=3204.
- 7. Дягелев, М.Ю. Контрольные работы по гидростатике и гидродинамике: методические указания по выполнению контрольных работ, для практической и самостоятельной работы студентов, обучающихся по направлению 08.03.01 «Строительство» всех форм обучения Ижевск, 2019 [Электронный ресурс]: Регистрационный номер 51/37-ИЭиЖКХ.

г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgibin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 7. Техническая библиотека http://www.tehlit.ru/
- 8. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/

г) программное обеспечение:

- 1. Microsoft Office (лицензионное ПО)
- 2. LibreOffice (свободно распространяемое ПО)
- 3. Doctor Web (лицензионное ПО)

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, ноутбук)).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук)

3. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201 корпус № 1, адрес: 426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.7)
- помещения для самостоятельной работы обучающихся (ауд. БИ-14, корпус№3, адрес:426069, Удмуртская Республика, г. Ижевск, ул. Студенческая, д.42).

Лист согласования рабочей программы дисциплины (модуля) на учебный год

Рабочая программа дисциплины (модуля) «Гидравлика» по направлению подготовки (специальности) 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технология машиностроения Индустрии 4.0» согласована на ведение учебного процесса в учебном году:

Учебный год	«Согласовано»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2024 – 2025	
2025 – 2026	
2026 – 2027	
2027 – 2028	

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства

по дисциплине

«Гидравлика»

(наименование дисциплины)

направление/специальность: <u>15.03.05</u> «Конструкторско-технологическое обеспечение
машиностроительных производств»
(шифр, наименование - полностью)
направленность (профиль/программа/специализация): полностью)
уровень образования: бакалавриат
форма обучения: очная (очная, очно-заочная или заочная)
Общая трудоемкость дисциплины составляет: 2 зачетных единицы

1. Оценочные средства

Оценивание формирование компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций представлены ниже.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
2.	ОПК-5.1 Знать: законы естественных наук, основные закономерности, действующие в процессе конструирования и проектирования, технологии изготовления машиностроительных изделий, их влияние на качественные показатели и производственные затраты ОПК-5.2 Уметь: применять естественнонаучные знания для конструирования, проектных расчетов, технологии изготовления изделий машиностроения, определения производственных затрат	31: основные законы статики и динамики газов и жидкости 32: научно-техническую информацию по законам статики и динамики газов и жидкости У1: ставить и решать задачи, связанные с массо- и теплопереносом в жидких и газовых средах, применять полученные знания для конструирования и проектных расчетов изделий машиностроения У2: работать со справочной и нормативной документацией	Тесты 1-4 Контрольная работы №1 и №2 Зачет (вопросы 1-14,19) Тесты 1-4 Контрольная работы №1 и №2 Зачет (вопросы 15-23)
3.	ОПК 5.3 Владеть: навыками конструирования, проектных расчетов, проектирования технологии изготовления изделий машиностроения, определения производственных затрат	H1: решения теоретических и прикладных задач, конструирования, проектных расчетов изделий машиностроения H2: проведения гидро- и газодинамического эксперимента	Тесты 1-4 Контрольная работы №1 и №2 Зачет (вопросы 24-27)

Описание элементов для оценивания формирования компетенций

Наименование: зачет.

Перечень вопросов для проведения зачета:

- 1. Предмет механики жидкости и газа. Гидравлика. Капельные жидкости и газы, их свойства.
- 2. Силы, действующие на жидкость: поверхностные, массовые, силы внутреннего трения. Давление.
- 3. Давление и его виды. Единицы измерения давления и связь между ними.
- 4. Расход жидкости и газа. Виды расхода. Единицы измерения расхода и связь между ними.
- 5. Основные свойства и характеристики жидкости: плотность, сжимаемость, температурное расширение, вязкость, растворимость газов в жидкости.
- 6. Основные свойства и характеристики газа: плотность, сжимаемость, температурное расширение, вязкость.
- 7. Гидростатическое давление и его свойства. Закон Паскаля.
- 8. Сила давления жидкости на плоскую стенку. Центр давления.
- 9. Сила давления жидкости на криволинейную стенку. Центр давления, тело давления и их определение.
- 10. Плавание тел. Закон Архимеда.
- 11. Траектория, линия тока, элементарная струйка, живое сечение.
- 12. Расход и средняя скорость потока, их связь. Уравнение сплошности (неразрывности) для жидкости.

- 13. Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.
- 14. Уравнение Бернулли для установившегося движения вязкой жидкости. Коэффициенты Кориолиса.
- 15. Гидравлические потери, их виды. Потери по длине. Потери на местных гидравлических сопротивлениях. Перевод потерь напора в потери давления и обратно.
- 16. Потери напора при внезапном расширении и сужении потока, в диффузоре.
- 17. Потери по длине (на трение). Формула Дарси-Вейсбаха.
- 18. Потери напора по длине при равномерном движении жидкости: режимы ламинарный и турбулентный.
- 19. Режимы течения жидкости в трубах. Критерий Рейнольдса.
- 20. Гидравлически гладкие и шероховатые трубы. Пограничный слой. Формулы Блазиуса, Никурадзе, Конакова, Альтшуля для определения потерь напора.
- 21. Кавитация в трубах. Физическая картина. Число кавитации и определение предельной скорости жилкости.
- 22. Ламинарный режим движения жидкости. Распределение скоростей по сечению трубы. Определение максимальной скорости, расхода.
- 23. Турбулентное течение жидкости в трубах. Эпюра скоростей. Коэффициент Кориолиса. Переходный режим течения в трубе.
- 24. Истечение жидкости через малое отверстие в тонкой стенке. Коэффициенты сжатия струи, скорости, расхода.
- 25. Истечение через насадки. Виды насадков и их применение.
- 26. Истечение под уровень. Опорожнение сосуда.
- 27. Гидравлический удар в трубах и его виды. Формула Жуковского.

Пример билета на зачет

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Билет к зачету № 2

по дисциплине «Гидравлика»

- 1. Какая из этих жидкостей не является газообразной?
- а) жидкий азот;
- б) ртуть;
- в) водород;
- г) кислород;
- 2. Первое свойство гидростатического давления гласит
- а) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует от рассматриваемого объема;
- б) в любой точке жидкости гидростатическое давление перпендикулярно площадке касательной к выделенному объему и действует внутрь рассматриваемого объема;
- в) в каждой точке жидкости гидростатическое давление действует параллельно площадке касательной к выделенному объему и направлено произвольно;
- г) гидростатическое давление неизменно во всех направлениях и всегда перпендикулярно в точке его приложения к выделенному объему.
 - 3. Переведите 15 м вод. ст. в паскали и мм рт. ст.
- 4. Отношение расхода жидкости к площади живого сечения называется а) средний расход потока жидкости;
- а) трубка Пито;
- 5. Для измерения скорости потока используется

- б) средняя скорость потока;
- в) максимальная скорость потока;
- г) минимальный расход потока.

- б) пьезометр;
- в) вискозиметр;
- г) трубка Вентури.
- 6. На участке трубопровода между двумя его сечениями, для которых записано уравнение Бернулли можно установить следующие гидроэлементы
 - а) фильтр, отвод, гидромотор, диффузор;
 - б) кран, конфузор, дроссель, насос;
 - в) фильтр, кран, диффузор, колено;
 - г) гидроцилиндр, дроссель, клапан, сопло.
 - 7. От каких параметров зависит значение числа Рейнольдса?
- а) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жидкости;
 - б) от расхода жидкости, от температуры жидкости, от длины трубопровода;
 - в) от динамической вязкости, от плотности и от скорости движения жидкости;
- г) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жидкости.
 - 8. Напор жидкости Н, используемый при нахождении скорости истечения жидкости в воздушное пространство определяется по формуле

 а) $H = H_0 + \frac{P_0 + P_1}{2\rho g};$ б) $H = H_0 + \frac{P_0 + P_1}{\rho g};$ в) $H = H_0 + \frac{P_0 - P_1}{\rho g};$ г) $H = H_0 + \frac{P_0 - P_1}{\rho g}.$

Билет рассмотрен и утвержден на заседании кафедры ВиВ « » 20 г. Протокол № Зав. кафедрой, д.т.н., проф. В.Г. Исаков

Критерии оценки:

Приведены в разделе 2.

Наименование: Тест

Представление в ФОС: набор тестов по разделам дисциплины

Варианты заданий: вопросы и требования к выполнению представлены в электронном курсе «Гидравлика» в СЭО ИжГТУ [6]

Пример теста по разделу дисциплины:

TECT №3

- 1. Площадь поперечного сечения потока, перпендикулярная направлению движения называется
 - а) открытым сечением;

б) живым сечением;

в) полным сечением;

- г) площадь расхода.
- 2. Реальной жидкостью называется жидкость
- а) не существующая в природе;
- б) находящаяся при реальных условиях;

- в) в которой присутствует внутреннее трение;
- г) способная быстро испаряться.
- 3. При неустановившемся движении, кривая, в каждой точке которой вектора скорости в данный момент времени направлены по касательной называется
 - а) траектория тока;
- б) трубка тока;

в) струйка тока;

- г) линия тока.
- 4. Расход потока измеряется в следующих единицах
- a) _M³;

б) м²/с;

B) M^3 c;

 Γ) M^3/c .

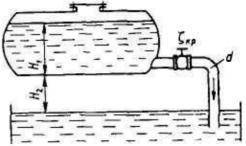
- 5. Уравнение неразрывности выражает
- б) закон сохранения энергии применительно к движущейся жидкости;
- б) закон сохранения массы применительно к движущейся жидкости;
- в) закон сохранения количества разрывов в движущейся жидкости;
- г) закон изменения направления линии тока.
- 6. Уравнение неразрывности течений имеет вид
- a) $S_1v_2 = S_2v_1 = const;$

6) $S_1v_1 = S_2v_2 = const;$

B) $S_1S_2 = v_1v_2 = const;$

- Γ) $S_1 / v_1 = S_2 / v_2 = const.$
- 7. Уравнение Бернулли для двух различных сечений потока дает взаимосвязь между
- а) давлением, расходом и скоростью;
- б) скоростью, давлением и коэффициентом Кориолиса;
- в) давлением, скоростью и геометрической высотой;
- г) геометрической высотой, скоростью, расходом.
- 8. Физический смысл уравнения Бернулли:
- а) это уравнение сохранения расхода жидкости;
- б) это уравнение сохранения энергии;
- в) это уравнение передачи импульса;
- г) нет правильного ответа.
- 9. Уравнение Бернулли для реальной жидкости имеет вид

a)
$$z_1 + \alpha_1 \frac{P_1}{\rho_F} + \frac{v_1^2}{2F} = z_2 + \alpha_2 \frac{P_2}{\rho_F} + \frac{v_2^2}{2F} - \sum h;$$


6)
$$z_1 + \frac{P_1}{\rho g} + \frac{v_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \frac{v_2^2}{2g} + \sum h;$$

$$^{\mathbf{B})}\;z_{1}+\frac{P_{1}}{2g}+\alpha_{1}\frac{\upsilon_{1}^{2}}{\rho g}=z_{2}+\frac{P_{2}}{2g}+\alpha_{2}\frac{\upsilon_{2}^{2}}{\rho g}+\sum h;$$

r)
$$z_1 + \frac{P_1}{\rho g} + \alpha_1 \frac{v_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \alpha_2 \frac{v_2^2}{2g} + \sum h$$

- 10. На участке трубопровода между двумя его сечениями, для которых записано уравнение Бернулли можно установить следующие гидроэлементы
 - а) фильтр, отвод, гидромотор, диффузор;
 - б) кран, конфузор, дроссель, насос;
 - в) фильтр, кран, диффузор, колено;
 - г) гидроцилиндр, дроссель, клапан, сопло.
 - 11. Коэффициент Кориолиса в уравнении Бернулли характеризует
 - а) режим течения жидкости;
 - б) степень гидравлического сопротивления трубопровода;
 - в) изменение скоростного напора;

- г) степень уменьшения уровня полной энергии.
- 12. Значение коэффициента Кориолиса для ламинарного режима движения жидкости равно
 - a) 1,5;
- б) 2:
- в) 3:
- г) 1.
- 13. Бензин сливается из цистерны по трубе диаметром d=50 мм, на которой установлен кран с коэффициентом сопротивления $\xi_{\kappa p}=3$. Определить расход бензина при $H_1 = 1.5$ м и $H_2 = 1.3$ м, если в верхней части иистерны имеет место вакуум $h_{вак} = 73.5$ мм рт. ст. Потерями на трение в трубе пренебречь. Плотность бензина $\rho = 750 \, \kappa г/m^3$.

- 14. Кавитация это
- а) воздействие давления жидкости на стенки трубопровода;
- б) движение жидкости в открытых руслах, связанное с интенсивным перемешиванием;
- в) местное изменение гидравлического сопротивления;
- г) изменение агрегатного состояния жидкости при движении в закрытых руслах, связанное с местным падением давления.
 - 15. Условие кавитации в сечении трубы
 - а) динамическое давление равняется атмосферному;
 - б) статическое давление равняется давлению насыщенных паров;
 - в) полное давление равняется давлению насыщенных паров;
 - г) статическое давление отсутствует.
 - 16. Кавитация не служит причиной увеличения
 - а) вибрации;
 - б) нагрева труб;
 - в) КПД гидромашин;
 - г) сопротивления трубопровода.
 - 17. Ударная волна при гидравлическом ударе это
 - а) область, в которой происходит увеличение давления;
 - б) область, в которой частицы жидкости ударяются друг о друга;
 - в) волна в виде сжатого объема жидкости;
- г) область, в которой жидкость ударяет о стенки трубопровода
 - 18. Повышение давления при гидравлическом ударе определяется по формуле $\mathbf{a)} \ \triangle P_{y\partial} = \sqrt{\frac{K}{\rho}} \ ; \qquad \qquad \mathbf{6)} \ \triangle P_{y\partial} = \rho \mathbf{g} h \ ; \\ \mathbf{b)} \ \triangle P_{y\partial} = \rho \mathbf{v}_0 c \ ; \qquad \qquad \mathbf{r}) \ \triangle P_{y\partial} = \rho \mathbf{v}_0^2 c$

a)
$$\triangle P_{y\partial} = \sqrt{\frac{K}{\rho}};$$

6)
$$\triangle P_{y\partial} = \rho g h$$

$$\mathbf{B}$$
) $\triangle P_{\mathbf{v}\partial} = \rho \mathbf{v}_0 c$:

r)
$$\triangle P_{\nu \partial} = \rho v_0^2$$

19. Скорость распространения ударной волны при абсолютно жестких стенках трубопровода

a)
$$c = \frac{1}{\sqrt{\frac{\rho}{K} + \frac{2\rho r}{\delta E}}};$$
 6) $c = \sqrt{\frac{K}{\rho}};$
B) $c = \sqrt{\frac{\rho}{K}};$ r) $c = \sqrt{\frac{K}{\Delta P_{\nu \partial}}}$

$$6) _{C} = \sqrt{\frac{K}{\rho}}$$

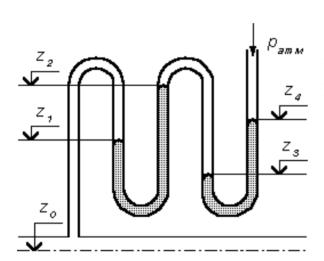
$$\mathbf{B})_{C} = \sqrt{\frac{\rho}{K}};$$

r)
$$_{C}=\sqrt{\frac{K}{\Delta P_{y\partial}}}$$

- 20. Затухание колебаний давления после гидравлического удара происходит за счет
- а) потери энергии жидкости при распространении ударной волны на преодоление сопротивления трубопровода;
 - б) потери энергии жидкости на нагрев трубопровода;
 - в) потери энергии на деформацию стенок трубопровода;
 - г) потерь энергии жидкости на преодоление сил трения и ухода энергии в резервуар.

Критерии оценки:

Приведены в разделе 2

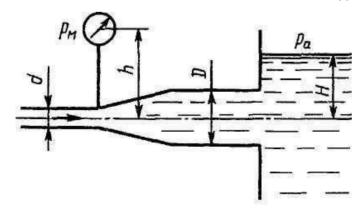

Наименование: контрольная работа.

Представление в ФОС: набор вариантов заданий.

Варианты заданий: задания и требования к выполнению контрольных работ №1 и №2

представлены в методических указаниях по дисциплине [10].

Пример задачи по контрольной работе №1 (всего 6 задач):


Задача 2

Определить избыточное давление воды в трубе по показаниям батарейного ртутного манометра. Отметки уровней ртути от оси трубы: z_1 , z_2 , z_3 , z_4 . Плотность воды — 1000кг/м³, ртути — 13600кг/м³.

№ вар.	Z1, M	Z2, M	Z3, M	Z4, M
1	5,3	4,2	2,3	1
•••				
30	1,8	3	1,5	2,8

Пример задачи по контрольной работе №2 (всего 6 задач):

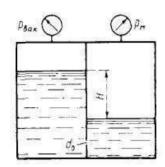
Задача 4

Определить расход жидкости, вытекающей из трубы диаметром d через плавное расширение (диффузор) и далее по трубе диаметром D в бак. Коэффициент сопротивления диффузора ξ =0,2 (отнесен к скорости в трубе), показание манометра $p_{\rm M}$; высота h; H; плотность жидкости ρ = 1000 кг/м³. Учесть потери на внезапное расширение, потерями на трение пренебречь, режим течения считать турбулентным.

№ вар.	<i>d</i> ,	<i>D</i> , мм	<i>р</i> м, кПа	<i>h</i> , м	<i>H</i> ₂ , м
1	0,15	20	4,5	0,6	1

•••					
30	50	70	43	0,5	7

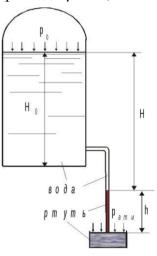
Критерии оценки:


Приведены в разделе 2

Наименование: практические работы

Представление в ФОС: набор вариантов заданий для решения задач на занятии

Варианты заданий:


БИЛЕТ №2

- 1. Определить направление истечения жидкости ($\rho = 1000 \, \text{кг/м}^3$) через отверстие $d_o = 5 \, \text{мм}$ и расход, если разность уровней H = 2 м, показание вакуумметра $p_{\text{вак}}$ соответствует 147 мм рт.ст. показание манометра $p_{\text{м}} = 0.25 \, \text{МПа}$, коэффициент расхода $\mu = 0.62$.
- 2. Определить величину абсолютного и вакуумметрического давления на поверхности воды в закрытом резервуаре при H=1,2 м, если высота подъема ртути в трубке h=20 см., плотность ртути р $_{pm}=13600$ кг/см 3 . Давление на поверхности ртути в чашке атмосферное

 $(p_{amm}=100\kappa\Pi a., \Pi$ лотность воды $\rho_{e}=1000\kappa z/M^{3}).$

3. Определить диаметр d отверстия в дне открытого бака, чтобы при глубине воды в баке $h_1=87$ см расход через отверстие был бы равен Q=5 л/с. Определить также, при какой глубине h_2 из бака будет такой же расход воды, если к отверстию в дне присоединить снаружи вертикальный цилиндрический насадок. $\mu=0.82$. Коэффициент расхода отверстия $\mu=0.62$.

Вопросы для защиты практических работ:

Уравнение Бернулли:

- 1. Уравнение Бернулли для потока реальной жидкости, его физический смысл.
- 2. Что такое трубка Пито и для чего она служит?
- 3. Как перевести уравнение Бернулли из размерности длин в размерность давлений?
- 4. Какие существуют режимы течения и как определяются границы существования этих режимов?
- 5. Как вычисляется число Рейнольдса?
- 6. Уравнение Бернулли для установившегося движения идеальной жидкости, его физический смысл.
- 7. Уравнение Бернулли для установившегося движения вязкой жидкости.
- 8. Коэффициенты Кориолиса. Величина коэффициентов для ламинарного и турбулентного режимов течения.
- 9. Рациональный выбор сечений для решения уравнения Бернулли.
- 10. Практическое применение уравнения Бернулли: трубка Пито.
- 11. Энергетическое толкование уравнения Бернулли.
- 12. Геометрическое толкование уравнения Бернулли.
- 13. Линия полного напора и ее построение.
- 14. Физический смысл уравнения Бернулли.

- 15. Влияние эпюры скоростей в канале на удельную кинетическую энергию потока. Ее учет в уравнении Бернулли.
- 16. Кавитация, причины, условия возникновения, меры борьбы с кавитацией. Определение возможности кавитации с помощью уравнения Бернулли.

Критерии оценки:

Приведены в разделе 2

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы	Форма начината	Количество баллов	
дисциплины	Форма контроля	min	max
1,2	Контрольная работа №1	2	5
3-5	Контрольная работа №2	2	5
1-5	Выполнение тестов 1-4 (2-5 баллов за тест, 0,25 балла за правильный ответ)	8	20
	Итого	12	30

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов
Контрольная работа	Продемонстрирован удовлетворительный уровень владения материалом при выполнении контрольной работы, даны правильные ответы не менее чем на 50% заданных задач
Тесты	Продемонстрирован удовлетворительный уровень владения материалом по теме работы, даны правильные ответы не менее чем на 70% заданных вопросов

Промежуточная аттестация по дисциплине проводится в форме зачета.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	18-30
«не зачтено»	12-17

Если сумма набранных баллов менее 12 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 12 до 30 баллов, обучающийся допускается до зачета.

Билет к зачету включает 10 теоретических вопроса (тесты).

Время на подготовку: 45 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки

Оценка	Критерии оценки		
«зачтено»	Обучающийся демонстрирует знание основного учебно-программного		

	материала в объеме, необходимом для дальнейшей учебы, умеет применять его при выполнении конкретных заданий, предусмотренных
	программой дисциплины
«не зачтено»	Обучающийся демонстрирует значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение