МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т.Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

ПД.03 «Физика»

09.02.07 Информационные системы и программирование

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 09.02.07 "Информационные системы и программирование", утвержденного приказом Министерства образования и науки Российской Федерации 09 декабря 2016 г. № 1547 с изменениями и дополнениями (приказ Министерства просвещения Российской Федерации от 17.12.2020 № 747 «О внесении изменений в федеральные государственные образовательные стандарты среднего профессионального образования» (зарегистрирован 22.01.2021 № 62178), приказ Министерства просвещения Российской Федерации от 01.09.2022 № 796 «О внесении изменений в федеральные государственные образовательные стандарты среднего профессионального образования» (зарегистрирован 11.10.2022 № 70461)).

Организация ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т.

разработчик: Калашникова»

Разработчик: Горбушин Денис Шарибзянович,

преподаватель СПО

Утверждено: Протокол Ученого совета филиала № 9, от 14 июня 2024 г.

Руководитель образовательной программы

Т.А. Савельева

15 июня 2024 г.

Согласовано: Начальник отдела по учебно-методической работе

Я И.Ф. Яковлева

15 июня 2024 г.

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонды оценочных средств (ФОС) являются составной частью образовательной программы среднего профессионального образования по подготовке специалистов среднего звена и предназначены для контроля и оценки образовательных достижений обучающихся, освоивших программу учебной дисциплины «Физика».

ФОС включают материалы для проведения текущего контроля в форме тестов, а также материалы для проведения промежуточной аттестации в форме дифференцированного зачёта.

2. РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ, ПОДЛЕЖАЩИЕ ПРОВЕРКЕ

В результате аттестации по учебной дисциплине «Физика» осуществляется комплексная проверка следующих умений и знаний в рамках федерального компонента государственного образовательного стандарта среднего полного общего образования в пределах программы подготовки специалистов среднего звена (ППССЗ) СПО по техническому профилю.

В результате освоения дисциплины студент должен уметь:

- У.1 приводить примеры экспериментов и (или) наблюдений, обосновывающих: существование электромагнитного поля и взаимосвязь электрического и магнитного полей, волновые и корпускулярные свойства света, необратимость тепловых процессов, зависимость свойств вещества от структуры молекул, превращения энергии и вероятностный характер процессов в природе, взаимосвязь компонентов экосистемы, влияние деятельности человека на экосистемы.
- У.2 объяснять прикладное значение важнейших достижений в области естественных наук для: развития энергетики, транспорта и средств связи, получения синтетических материалов с заданными свойствами, создания биотехнологий, охраны окружающей среды.
- У.3 выдвигать гипотезы и предлагать пути их проверки, делать выводы на основе экспериментальных данных, представленных в виде графика, таблицы или диаграммы.
- У.4 работать с естественно научной информацией, содержащейся в сообщениях СМИ, интернет ресурсах, научно-популярной литературе: владеть методами поиска, выделять смысловую основу и оценивать достоверность информации.
- У.5 использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: оценки влияния на организм человека электромагнитных волн и радиоактивных излучений; энергосбережения; безопасного использования материалов и веществ в быту; осознанных личных действий по охране окружающей среды.

В результате освоения дисциплины студент должен знать:

- смысл основных понятий и фундаментальных констант физики.
- вклад великих ученых в формирование современной естественно-научной картины мира.

3. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ

Перечень рефератов (докладов), электронных учебных презентаций

- 1. Скорость света: методы определения.
- 2. Методы получения полупроводниковых пластин.
- 3. Действие поляризационных приборов.
- 4. Принцип действия радиоактивных двигателей.
- 5. Максвелл и его электромагнитная теория.
- 6. Характеристика торсионных полей и технологий.
- 7. Электромагнитные волны и электромагнитное излучение.
- 8. Принцип действия аккумуляторов.
- 9. Шаровая молния уникальное природное явление.
- 10. Функционирование электростанций.
- 11. Ядерная энергетика.
- 12. Значение экспериментов Николы Теслы.
- 13. Солнце как источник энергии.
- 14. Ультразвук и возможности его применения.
- 15. Реакции ядерного синтеза. Термоядерные реакции.
- 16. Элементарные частицы и их взаимодействия.
- 17. Ускорители заряженных частиц. Адронный коллайдер.
- 18. Силы инерции в природе и технике. Силы Кориолиса.
- 19. Связанные колебания Уилберфорса.
- 20. Гироскопические силы. Вынужденная прецессия гироскопа.
- 21. Гравитация и геометрические свойства пространства
- 22. Плазма-четвертое состояние вещества.
- 23. Фазовое равновесие и фазовые превращения.
- 24. Вечные двигатели.
- 25. Физические основы разрядно-импульсной технологии.

4. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Контрольные вопросы

- 1. Кинематическое описание движения системы отсчета. Материальная точка. Траектория. Перемещение и путь.
- 2. Скорость и ускорение при прямолинейном движении. Угловая скорость и угловое ускорение.
- 3. Тангенциальное и нормальное ускорение.
- 4. Движение материальной точки по окружности.
- 5. Связь между линейными и угловыми характеристиками движения.
- 6. Первый закон Ньютона. Инерциальные системы отсчета.
- 7. Взаимодействие тел. Сила, масса. Консервативные и неконсервативные силы. Второй закон Ньютона.
- 8. Импульс (количество движения). Второй закон Ньютона.
- 9. Третий закон Ньютона.
- 10. Закон сохранения импульса.
- 11. Преобразования Галилея. Механический принцип относительности.
- 12. Силы тяготения. Поле силы тяжести вблизи Земли.
- 13. Понятие о поле сил. Гравитационное поле и его напряженность. Потенциал гравитационного поля и его градиент.
- 14. Работа, мощность. Работа переменной силы.
- 15. Потенциальная энергия. Кинематическая энергия. Энергия упруго деформированного тела.
- 16. Полная механическая энергия системы тел. Закон сохранения энергии в механике.
- 17. Понятие абсолютно твердого тела. Поступательное и вращательное движение тела. Центр инерции (масс) твердого тела.
- 18. Момент силы. Момент инерции. Теорема Штейнера.
- 19. Основной закон динамики вращательного движения.
- 20. Момент импульса. Закон сохранения момента импульса. Кинематическая энергия тела, вращающегося вокруг неподвижной оси.
- 21. Термодинамические системы. Состояние системы. Параметры состояния.
- 22. Состояние термодинамической системы. Равновесное и неравновесное состояния.
- 23. Идеальный газ. Уравнение состояния идеального газа. Изопроцессы.
- 24. Основное уравнение молекулярно-кинетической теории газов.
- 25. Средняя кинетическая энергия поступательного движения одноатомной молекулы и ее связь с температурой. Число степеней свободы и средняя энергия многоатомной молекулы.

- 26. Внутренняя энергия и теплоемкость идеального газа.
- 27. Распределение молекул газа по скоростям. Закон Максвелла. Наиболее вероятная, средняя арифметическая и средняя квадратичная скорости молекул.
- 28. Идеальный газ в поле силы тяжести. Распределение Больцмана. Изменение концентрации частиц с высотой. Распределение Максвелла-Больцмана.
- 29. Средняя длина свободного пробега молекул.
- 30. Явления переноса (диффузия, вязкость, теплопроводность). Их законы.
- 31. Первое начало термодинамики. Применение первого начала термодинамики к различным изопроцессам.
- 32. Адиабатический процесс. Уравнение Пуассона.
- 33. Второе начало термодинамики.
- 34. Тепловой двигатель. Цикл Карно и его К.П.Д.
- 35. Энтропия. Изменение энтропии при обратимых и необратимых процессах.
- 36. Энтропия. Связь энтропии и вероятности состояния.
- 37. Статистический смысл второго начала термодинамики.
- 38. Теорема Нернста.
- 39. Поверхностное натяжение. Смачивание.
- 40. Капиллярные явления.
- 41. Закон сохранения электрического заряда. Закон Кулона.
- 42. Напряженность электрического поля. Принцип суперпозиции полей.
- 43. Поток вектора напряженности. Теорема Остроградского-Гаусса.
- 44. Работа сил электрического поля при перемещении зарядов. Циркуляция вектора напряженности.
- 45. Потенциал. Связь между напряженностью и потенциалом электрического поля. Потенциал поля точечного заряда.
- 46. Проводники и диэлектрики.
- 47. Электрический ток. Сила тока. Электродвижущая сила. Закон Ома для полной цепи.
- 48. Законы Кирхгофа для разветвленных цепей.
- 49. Работа и мощность электрического тока. Закон Джоуля-Ленца.
- 50. Элементарная классическая теория электропроводности металлов.
- 51. Энергия заряженного проводника. Энергия заряженного конденсатора. Электроемкость проводников. Конденсаторы. Соединение конденсаторов.
- 52. Энергия электростатического поля. Объемная плотность энергии.
- 53. Термоэлектронная эмиссия и ее практическое применение.
- 54. Магнитное поле в вакууме. Вектор магнитной индукции. Сила Ампера. Сила Лоренца. Эффект Холла.
- 55. Магнитное поле постоянного тока. Закон Био-Савара-Лапласа.

- 56. Магнитное поле прямолинейного проводника с током, отрезка, кругового витка, соленоида.
- 57. Магнитный поток. Теорема Остроградского-Гаусса.
- 58. Магнитное поле в веществе. Намагниченность. Магнитные проницаемость и восприимчивость.
- 59. Виды магнетиков. Диамагнетизм. Парамагнетизм. Зависимость магнитной восприимчивости от температуры.
- 60. Ферромагнетики. Гистерезис. Домены. Точка Кюри.
- 61. Электромагнитная индукция. ЭДС индукции. Правило Ленца.
- 62. Явление самоиндукции. Индуктивность.
- 63. Энергия магнитного поля. Плотность энергии.
- 64. Колебательный контур. Его основное уравнение.
- 65. Собственные колебания контура. Формула Томсона.
- 66. Переменный ток. Реактивное сопротивление в цепи переменного тока.
- 67. Обобщение закона электромагнитной индукции Фарадея. Первое уравнение Максвелла.
- 68. Ток смещения. Второе уравнение Максвелла.
- 69. Волновое движение. Уравнение волны и волновое уравнение.
- 70. Плоская электромагнитная волна. Энергия электромагнитного поля.
- 71. Двойственная природа света. Корпускулярно-волновой дуализм.
- 72. Когерентность света. Способы получения когерентных источников света.
- 73. Интерференция, дифракция и поляризация света.
- 74. Дифракционная решетка. Дифракция рентгеновских лучей на кристаллах.
- 75. Естественный и поляризованный свет. Закон Малюса.
- 76. Тепловое равновесное излучение. Закон Кирхгофа.
- 77. Закон Стефана-Больцмана. Закон смещения Вина.
- Распределение энергии в спектре излучения абсолютно черного тела. Формула Релея-Джинса.
- 79. Фотоэлектрический эффект. Основные законы фотоэффекта.
- 80. Эффект Комптона.
- 81. Гипотеза де Бройля. Формула де Бройля для свободной частицы.
- 82. Корпускулярно-волновой дуализм. Примеры проявления.
- 83. Соотношение неопределенностей. Интерпретация.
- 84. Волновая функция. Уравнение Шредингера.
- 85. Уравнение Шредингера для атома водорода.
- 86. Опыты Штерна и Герлаха. Понятие о спине электрона.
- 87. Молекула, атом. Изотопы. Примеры.
- 88. Принцип Паули. Распределение электронов в атоме.
- 89. Опыты Резерфорда по рассеянию α-частиц.
- 90. Модель атома по Резерфорду.

- 91. Модель атома Бора. Постулаты Бора.
- 92. Теория водородного атома Бора.
- 93. Энергия излучаемая (поглощаемая) атомом. Схема энергетических уровней и переходов электронов.
- 94. Строение атомных ядер.
- 95. Масса и энергия связи в ядре.
- 96. Элементарные частицы. Классификация элементарных частиц.
- 97. Кварки. Кварковая модель адронов.
- 98. Явление радиоактивности. α, β, γ распады.
- 99. Закон радиоактивного распада.
- 100. Негативное воздействие радиоактивности. Физическая природа воздействия на биологические объекты.
- 101. Типы радиоактивного загрязнения окружающей среды.
- 102. Понятие о ядерных реакциях. Реакции деления, термоядерные реакции.

5. КОНТРОЛЬНО-ОЦЕНОЧНЫЕ СРЕДСТВА ИТОГОВОЙ АТТЕСТАЦИИ

<u>Экзаменационные билеты</u>

Билет № 1

- 1. Механическое движение. Относительность движения. Равномерное и равноускоренное прямолинейное движение.
- 2. Задача на применение законов сохранения массового числа и электрического заряда.

Билет № 2

- 1. Взаимодействие тел. Сила. Законы динамики Ньютона.
- 2. Лабораторная работа «Измерение показателя преломления стекла».

Билет № 3

- 1. Импульс тела. Закон сохранения импульса. Проявление закона сохранения импульса в природе и его использование в технике.
- 2. Задача на определение периода и частоты свободных колебаний в колебательном контуре.

Билет № 4

- 1. Закон всемирного тяготения. Сила тяжести. Вес тела. Невесомость.
- 2. Задача на применение первого закона термодинамики.

Билет № 5

- 1. Превращения энергии при механических колебаниях. Свободные и вынужденные колебания. Резонанс.
- 2. Лабораторная работа «Расчет и измерение сопротивления двух параллельно соединенных резисторов».

Билет № 6

- 1. Опытное обоснование основных положений молекулярно-кинетической теории строения вещества. Масса и размеры молекул.
- 2. Задача на движение или равновесие заряженной частицы в электрическом поле.

Билет № 7

- 1. Идеальный газ. Основное уравнение молекулярно-кинетической теории идеального газа. Температура и ее измерение. Абсолютная температура.
- 2. Задача на определение индукции магнитного поля (по закону Ампера или формулы для расчета силы Лоренца).

Билет № 8

- 1. Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона). Изопроцессы.
- 2. Задача на применение уравнения Эйнштейна для фотоэффекта.

Билет № 9

- 1. Испарение и конденсация. Насыщенные и ненасыщенные пары. Влажность воздуха. Измерение влажности воздуха.
- 2. Лабораторная работа «Измерение длины световой волны с использованием дифракционной решетки».

Билет № 10

- 1. Кристаллические и аморфные тела. Упругие и пластические деформации твердых тел.
- 2. Задача на определение показателя преломления прозрачной среды.

Билет № 11

- 1. Внутренняя энергия. Первый закон термодинамики. Применение первого закона термодинамики к изопроцессам. Адиабатный процесс.
- 2. Задача на применение закона электромагнитной индукции.

Билет № 12

- 1. Взаимодействие заряженных тел. Закон Кулона. Закон сохранения электрического заряда.
- 2. Задача на применение закона сохранения энергии.

Билет № 13

- 1. Конденсаторы. Электроемкость конденсатора. Применение конденсаторов.
- 2. Задача на применение уравнения состояния идеального газа.

Билет № 14

- 1. Работа и мощность в цепи постоянного тока. Электродвижущая сила. Закон Ома для полной цепи.
- 2. Лабораторная работа «Измерение массы тела».

Билет № 15

- 1. Магнитное поле. Действие магнитного поля на электрический заряд и опыты, подтверждающие это действие.
- 2. Лабораторная работа «Измерение влажности воздуха».

Билет № 16

- 1. Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы.
- 2. Задача на применение графиков изопроцессов.

Билет № 17

- 1. Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца.
- 2. Задача на определение работы газа с помощью графика зависимости давления газа от его объема.

Билет № 18

- 1. Явление самоиндукции. Индуктивность. Электромагнитное поле.
- 2. Задача на определение модуля Юнга материала, из которого изготовлена проволока.

Билет № 19

- 1. Свободные и вынужденные электромагнитные колебания. Колебательный контур и превращение энергии при электромагнитных колебаниях.
- 2. Задача на применение закона Джоуля-Ленца.

Билет № 20

- 1. Электромагнитные волны и их свойства. Принципы радиосвязи и примеры их практического использования.
- 2. Лабораторная работа «Измерение мощности лампочки накаливания».

Билет № 21

- 1. Волновые свойства света. Электромагнитная природа света.
- 2. Задача на применение закона Кулона.

Билет № 22

- 1. Опыты Резерфорда по рассеянию α-частиц. Ядерная модель атома. Квантовые постулаты Бора.
- 2. Лабораторная работа «Измерение удельного сопротивления материала, из которого сделан проводник».

Билет № 23

- 1. Испускание и поглощение света атомами. Спектральный анализ.
- 2. Лабораторная работа «Измерение ЭДС и внутреннего сопротивления источника тока с использованием амперметра и вольтметра».

Билет № 24

- 1. Фотоэффект и его законы. Уравнение Эйнштейна для фотоэффекта. Применение фотоэффекта в технике.
- 2. Задача на применение закона сохранения импульса.

Билет № 25

- 1. Состав ядра атома. Изотопы. Энергия связи ядра атома. Цепная ядерная реакция. Условия ее протекания. Термоядерные реакции.
- 2. Лабораторная работа «Расчет общего сопротивления двух последовательно соединенных резисторов».

Билет № 26

- 1. Радиоактивность. Виды радиоактивных излучений и методы их регистрации. Биологическое действие ионизирующих излучений.
- 2. Лабораторная работа «Оценка массы воздуха в классной комнате при помощи необходимых измерений и расчетов».

КРИТЕРИИ ОЦЕНОК

При оценке ответа используется традиционная форма оценивания по пятибалльной шкале каждого вопроса и выставление среднего значения в итоге за экзамен. Такой принцип оценивания подчеркивает значимость всех видов деятельности по предмету.

- На "5" оценивается ответ, если учащийся имеет системные полные знания и умения по поставленному вопросу. Содержание вопроса учащийся излагает связно, в краткой форме, раскрывает последовательно суть изученного материала, демонстрируя прочность и прикладную направленность полученных знаний и умений, не допускает терминологических ошибок и фактических неточностей.
- На "4" оценивается ответ, в котором отсутствуют незначительные элементы содержания или присутствуют все необходимые элементы содержания, но допущены некоторые ошибки, иногда нарушалась последовательность изложения.
- На "3" оценивается неполный ответ, в котором отсутствуют значительные элементы содержания или присутствуют все вышеизложенные знания, но допущены существенные ошибки, нелогично, пространно изложено основное содержание вопроса.
- На "2" оценивается ответ, при котором учащиеся демонстрируют отрывочные, бессистемные знания, неумение выделить главное, существенное в ответе, допускают грубые ошибки.