МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Программирование дискретных структур

направление подготовки: 09.03.01 «Информатика и вычислительная техника»

направленность (профиль): <u>Автоматизированные системы обработки</u> информации и управления

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 5 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель:

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

А.Г. Горбушин

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 09.03.01 «Информатика и вычислительная техника», профиль «Автоматизированные системы обработки информации и управления».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

А.Г. Горбушин

Руководитель образовательной программы

20.05.2025 г.

Аннотация к дисциплине

Название дисциплины	Программирование дискретных структур
Направление подготовки	09.03.01 "Информатика и вычислительная
(специальность)	техника"
Направленность	Автоматизированные системы обработки
(профиль/программа/специализаци	информации и управления
я)	
Место дисциплины	Дисциплина относится к части, формируемой
	участниками образовательных отношений Блока 1
	«Дисциплины (модули)» ООП
Трудоемкость (з.е. / часы)	5 з.е./180 часов
Цель изучения дисциплины	Усвоение студентами теоретических основ
	дискретной математики и математической логики,
	составляющих фундамент ряда математических
	дисциплин и дисциплин прикладного характера.
Компетенции, формируемые в	ПК-5. Способен разрабатывать требования и
результате освоения дисциплины	проектировать программное обеспечение
Содержание дисциплины	Введение. Предмет и содержание курса, его место
(основные разделы и темы)	в учебном плане. Последовательность его
	изучения. Взаимосвязь курса со смежными
	дисциплинами; Понятие математической модели
	объектов проектирования. Понятие
	математической модели. Классификация моделей.
	Формы представления моделей. Требования к
	математической модели; Элементы теории
	множеств. Основные понятия теории множеств.
	Операции над множествами. Диаграммы Венна.
	Законы алгебры множеств. Сравнение
	бесконечных множеств. Мощность;
	Алгебраические системы; Элементы
	математической логики; Теория графов и
	модельных графов
Форма промежуточной	Экзамен (2 семестр)
аттестации	

1. Цели и задачи дисциплины:

Целью освоения дисциплины является усвоение студентами теоретических основ дискретной математики и математической логики, составляющих фундамент ряда математических дисциплин и дисциплин прикладного характера.

Задачи дисциплины:

- обучение студентов теоретическим основам курса;
- овладение методами решения практических задач;
- приобретение навыков самостоятельной научной деятельности.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания
1.	Знать принципы использования языка, средств, методов и моделей дискретной
	математики в дисциплинах, которым ее изучение должно предшествовать, а
	также в проблемах прикладного характера;
2.	Знать основы теории множеств, алгебры отношений, математической логики,
	теории графов.

Умения, приобретаемые в ходе освоения дисциплины

№ п/п	Умения								
1.	Использовать методы дискретной математики при изучении дисциплин								
	математического и естественно - научного и профессионального цикла;								
2.	Уметь решать задачи из разделов теории множеств, алгебры отношений,								
	математической логики, теории графов.								

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки
1.	Владеть всем арсеналом методов дискретной математики, который необходим
	для формирования соответствующих компетенций.

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-5. Способен	ПК-5.1. Знать: методологии разработки	1,2		
разрабатывать	программного обеспечения и технологии			
требования и	программирования, методы и средства			
проектировать	проектирования программного обеспечения,			
программное	программных интерфейсов и баз данных,			
обеспечение	языки формализации функциональных			
	спецификаций			
	ПК-5.2. Уметь: согласовывать требования к		1,2	
	программному обеспечению с			
	заинтересованными сторонами, выбирать			
	средства реализации требований к			
	программному обеспечению, использовать			
	существующие типовые решения и шаблоны			
	проектирования программного обеспечения,			
	вырабатывать варианты реализации			
	программного обеспечения, проводить			
	оценку и обоснование рекомендуемых			
	решений			

ПК-5.3. Владеть: навыками анализа	1
требований к программному обеспечению,	
навыками разработки технических	
спецификаций на программные компоненты	
и их взаимодействие, навыками разработки,	
изменения и согласования архитектуры	
программного обеспечения, навыками	
проектирования структур данных, баз	
данных, программных интерфейсов	

3. Место дисциплины в структуре ООП

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)» ООП. Дисциплина изучается на 1 курсе во 2 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Информатика, Математический анализ.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): Математическая логика и теория алгоритмов, Компьютерные вычисления.

4. Структура и содержание дисциплины 4.1. Структура дисциплины

№ п/ п	Раздел дисциплины. Форма промежуточной аттестации (по семестрам) Введение Понятие математической модели объектов		Семестр 2		удоем	икості	ам уч ты	е ела (в ебной <i>СРС</i> 20	Содержание самостоятельной работы Выполнение лабораторной работы
3	проектирования Элементы теории множеств	6	2	4	2				Подготовка к практическим занятиям
4	Алгебраические системы	39	2	10	5	4		20	Выполнение лабораторной работы, выполнение контрольной работы.
5	Элементы математической логики	36	2	8	4	4		20	Выполнение лабораторной работы.
6	Теория графов и модельных графов	33	2	6	3	4		20	Выполнение лабораторной работы, выполнение контрольной работы.
	Экзамен	36					0,4	35,6	Экзамен выставляется по совокупности результатов текущего контроля успеваемости и по билетам
	Итого:	180		32	16	16	0,4	115,6	

4.2. Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1	Введение	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	
2	Понятие математической модели объектов проектирования	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	Отчет по лабораторной работе.
3	Элементы теории множеств	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	Работа на практических занятиях
4	Алгебраические системы	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	Отчет по лабораторной работе, Контрольная работа.
5	Элементы математической логики	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	Отчет по лабораторной работе.
6	Теория графов и модельных графов	ПК-5: ПК-5.1, ПК-5.2, ПК- 5.3	1,2	1,2	1	Отчет по лабораторной работе. Контрольная работа.

4.3. Наименование тем лекций, их содержание и объем в часах

№ п/п	 Л₂ раздела дисциплины 	Наименование лекций	Трудоемкость (час)
1.	1	1. Предмет и содержание курса, его место в учебном	1
		плане. Последовательность его изучения.	
		Взаимосвязь курса со смежными дисциплинами.	
2.	2	1. Понятие математической модели. Классификация	3
		моделей. Формы представления моделей.	
		Требования к математической модели.	
3.	3	1. Основные понятия теории множеств. Операции	4
		над множествами. Диаграммы Венна. Законы	
		алгебры множеств. Сравнение бесконечных	
		множеств.	
		Мощность.	
4.	4	1. Множество, функция, операция. Способы задания.	3
		2. Понятие алгебры. Фундаментальные алгебры.	2
		3. Бинарные отношения, способы их задания	3
		и свойства.	2
		4. Модель. Алгебра отношений.	
5.	5	1. Основные понятия математической логики.	2
		Логические операции. Законы алгебры	
		высказываний.	2
		2. Составление и решение логических	
		уравнений. Формулы логики. Отношения	
		между ними. Различные формы булевых	1
		функций.	1
		3. Методы минимизации булевых функций.	1
		4. Полнота и замкнутость.	1
		5. Синтез логических схем.	
		6. Математическая логика и анализ рассуждений.	

6.	6	1. Взвешенный граф и его матричное задание.	1
		2. Связность и сильная связность графа. Цикломатика.	1
		3. Дифференцирование графов и мографов.	1
		4. Устойчивость, покрытия, паросочетания.	0,5
		5. Вложение графов.	0,5
		6. Раскраска вершин и ребер графа.	0,5
		7. Характеризация реберности.	0,5
		8. Характеризация раскраски графов.	1
	Всего		32

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоемкость (час)
1.	2	Понятие математической модели объектов	2
		проектирования	
2.	3	Элементы теории множеств	2
3.	4	Алгебраические системы	5
4.	5	Элементы математической логики	4
5.	6	Теория графов и модельных графов	3
	Всего		16

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоемкость (час)
1.	2	Изучение синтаксиса языка Python. Работа с	4
		множествами.	
2.	4	Алгебра отношений.	4
3.	5	Основы математической логики.	4
4.	6	Минимизация матричных смежностей. Построение модельного графа.	4
	Всего		16

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- контрольные работы;
- защиты лабораторных работ;
- самостоятельная работа по теме;
- экзамен.

Примечание: оценочные материалы (типовые варианты тестов, контрольных работ и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – экзамен.

6. Учебно-методическое и информационное обеспечение дисциплины: а) основная литература:

- 1. Храмова, Т. В. Дискретная математика. Элементы теории графов [Электронный ресурс] : учебное пособие / Т. В. Храмова. Электрон. текстовые данные. Новосибирск : Сибирский государственный университет телекоммуникаций и информатики, 2014. 43 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/45466.html
- 2. Клашанов, Ф. К. Дискретная математика. Часть 1. Основы теории множеств и комбинаторика [Электронный ресурс] : учебное пособие / Ф. К. Клашанов. Электрон. текстовые данные. М. : Московский государственный строительный университет, ЭБС АСВ, 2010. 112 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/16394.html

б) дополнительная литература:

1. Хаггарти, Р. Дискретная математика для программистов : учебное пособие / Р. Хаггарти. — Москва : Техносфера, 2012. — 400 с. — ISBN 978-5-94836-303-5. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/12723.html

в) перечень ресурсов информационно-коммуникационной сети Интернет:

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi- bin/irbis64r_12/cgiirbis_64.exe? LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/
- 5. Международный индекс научного цитирования Web of Science-http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU –https://elibrary.ru/defaultx.asp

г) лицензионное и свободно распространяемое программное обеспечение:

1. LibreOffice (Свободно распространяемые офисные пакеты)

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используется аудитория № 204, оснащенная следующим оборудованием: доской, компьютерами с возможностью подключения к сети «Интернет», столами, стульями.

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова;
- помещение для самостоятельной работы обучающихся

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Программирование дискретных структур

наименование – полностью

направление 09.03.01 Информатика и вычислительная техника
код, наименование – полностью
профиль Автоматизированные системы обработки информации и управления
наименование – полностью
уровень образования: бакалавриат
форма обучения: очная
очная/очно-заочная
общая трудоемкость дисциплины составляет: 5 зачетных единиц

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№	Коды компетенции и	Результат обучения	Формы текущего и
п/п		(знания, умения и	промежуточного
11/11	индикаторов	навыки)	контроля
1	ПК-5.1. Знать: методологии	Знания:	Контрольная работа
	разработки программного	- Знать принципы	Лабораторная работа
	обеспечения и технологии	использования языка,	Экзамен
	программирования, методы и	средств, методов и	Самостоятельная работа
	средства проектирования	моделей дискретной	по теме
	программного обеспечения,	математики в	no reme
	программных интерфейсов и баз	дисциплинах, которым ее	
	данных, языки формализации	изучение должно	
	функциональных	предшествовать, а также в	
	ПК-5.2. Уметь: согласовывать	проблемах прикладного	
	требования к программному	характера;	
	обеспечению с заинтересованными	- Знать основы теории	
	сторонами, выбирать средства	множеств, алгебры	
	реализации требований к	отношений,	
	программному обеспечению,	математической	
	использовать существующие	логики, теории графов.	
	типовые решения и шаблоны	Умения:	
	проектирования программного	- Использовать методы	
	обеспечения, вырабатывать	дискретной математики	
	варианты реализации	при изучении дисциплин	
	программного обеспечения,	математического и	
	проводить оценку и обоснование	естественно - научного и	
	рекомендуемых решений	профессионального цикла;	
	спецификаций	- Уметь решать задачи из	
	ПК-5.3. Владеть: навыками	разделов теории	
	анализа требований к	множеств, алгебры	
	программному обеспечению,	отношений,	
	навыками разработки технических	математической логики,	
	спецификаций на программные	теории графов.	
	компоненты и их взаимодействие,	Навыки:	
	навыками разработки, изменения и	- Владеть всем	
	согласования архитектуры	арсеналом методов	
	программного обеспечения,	дискретной математики,	
	навыками проектирования	который необходим для	
	структур данных, баз данных,	формирования	
	программных интерфейсов	соответствующих	
		компетенций.	

Наименование: контрольная работа

Представление в ФОС: набор вариантов заданий

Варианты заданий:

Контрольная работа № 1.

1.(3 б.) Составить математическую модель задачи (всех типов):

Дан одномерный массив вещественных чисел. Необходимо упорядочить его по возрастанию. Задачу решить без использования дополнительных массивов.

2.(2 б.)
$$U = \{1, 2, 3, 4, 5, 6\}; A = \{1, 2, 3\}, B = \{1, 3, 5, 6\}; C = \{4, 5, 6\}.$$
 Найти: **a)** $A \setminus C$; **b)** $A \cup B$; $C \cap B \cap A$

3.(5 б.) Изобразить множество F на диаграммах Эйлера — Венна; упростить выражение F, используя законы алгебры множеств; написать булеан множества F.

$$U = A + B + C; A = \{1,3,7\}; B = \{3,5,9\}; C = \{3,9,11\};$$

 $F = B * (A + C) + A * B * C + C * (A + B);$

4.(2 б.) Дано множество U – множество точек плоскости. Указать на плоскости множество А:

1)
$$A = \{(x, y) \ \frac{1}{5 * x +} \le y \le 3 * x^2 + 5, -10 \le x \le 15\};$$

5.(3 б.) Пусть отношение $R \subseteq M \times M$ задано матрицей, $M = \big\{1,2,3,4\big\}$. Определить матрицы

отношений $\overline{R}, R^{-1}, R^{(2)}, R^0, R^*$. Каковы свойства исходных и полученных отношений?

K =					
	1	2	3	4	5
1	1	0	0	1	0
2	0	1	0	0	1
3	1	0	1	0	0
4	1	0	0	0	0
5	0	1	0	0	1

Контрольная работа № 2.

1. (76) Построить СКНФ и СДНФ функции, упростив формулу с помощью эквивалентных преобразований.

1).
$$F = \overline{x} \Rightarrow (\overline{y} \Rightarrow x * \overline{z}) * (z + x * y)$$

2. (56) Построить СКНФ и СДНФ функции, заданной в виде таблицы.

()		1		
1).	X	y	Z	f
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
	1	0	1	1
	1	1	0	1
	1	1	1	1

3. (76) Проверить правильность умозаключения.

4. (66) Найти все следствия из посылок.

1).
$$\frac{x \Leftrightarrow y}{x+y}$$

5. (56) Найти отрицание квантифицированной предикатной формулы.

1).
$$\exists x ((P(x) \Rightarrow Q(x)) * \forall x (S(x) \Leftrightarrow \overline{R(x)}))$$

6. (56) Проверить правильность умозаключения с помощью областей истинности предикатов.

$$P(x) \Rightarrow Q(x)$$

1).
$$Q(x) \Rightarrow R(x)$$

$$P(x) * R(x) \Rightarrow \overline{Q(x)}$$

Наименование: защита лабораторных работ

Представление в ФОС: набор вариантов заданий

Варианты заданий:

Лабораторная работа №1

Написать программу на языке Python, которая по заданным множествам A, B, C формирует множество, задаваемое формулой. Элементы полученного множества вывести на экран.

Предусмотреть возможность ввода исходных множеств и формулы с клавиатуры. Предусмотреть обработку ошибок: ввод одинаковых элементов множества, некорректный ввод формулы.

Варианты тестовых заданий:

- $1.(A\backslash B)\cap (A\backslash C).$
- 2. $A \setminus (B \cup C)$.
- $3. A \setminus (B \cap C).$

Содержание отчета: Для защиты лабораторной работы необходимо представить отчет, содержащий пример аналитического решения задачи, код программы и результат работы программы для трех тестовых наборов множеств, а также откомпилированный ехе-файл.

Лабораторная работа №2

- 1. Составить математическую модель отношения R
- 2. Написать программу на языке Python, которая по заданному множеству:
 - Представляет отношение R в виде списка и матрицы
 - Составляет матрицу противоположного отношения, обратного отношения, составного отношения, отношения транзитивного замыкания, отношения рефлексивного замыкания
- 3. Определить свойства полученных отношений по построенным таблицам
- 4. Дать словесную формулировку всех полученных отношений
- 5. Сделать выводы

No	Задание
варианта	Заданис
1.	На множестве $M=\{1,2,3,4,5,6,7,8,9\}$ задано двуместное отношение $R=\{$ быть
	нечетными числами}
2.	На множестве $M=\{1,2,3,4,5,6,7,8,9\}$ задано двуместное отношение $R=\{$ быть
	четными числами}
3.	На множестве $M=\{1,2,3,4,5,6,7,8,9,10\}$ задано двуместное отношение $S=\{(a+b)$
	делится на 2}

Лабораторная работа №3

Необходимо повторить теорию «Математическая логика»:

- алгебра высказываний
- функции алгебры логики
- исчисления высказываний

Написать программу на языке Python, которая позволяет:

- 1. Проверить тождественную истинность формулы
- 2. Доказать эквивалентность.
- 3. Вывести в исчислении высказываний (ИС) секвенции.

NC	n
№ варианта	Задание
1.	$1.((P\supset Q)\vee (Q\supset P))$
	$2. \neg \neg A \sim A$
	$3.(A\supset (B\supset C)) \vdash (B\supset (A\supset C))$
2.	$1.((P\supset Q)\vee (P\supset \neg P)$
	$2.(A\supset B)\sim (\neg A\supset B)$
	3. $(A \supset (B \supset C)) \vdash ((A \& B) \supset C)$
3.	$1.(P\supset (Q\supset (P\&Q)))$
	$2. \neg (A \& B) \sim (\neg A \vee \neg B)$
	3. $((A \& B) \supset C) \vdash (A \supset (B \supset C))$

Лабораторная работа №4

Написать программу на языке Python, которая для данного графа G(X,U,f) позволяет найти:

- 1) матрицу смежности;
- 2) матрицу инцидентности;
- 3) матрицу достижимости;
- 4) число связности и число сильной связности.
- 1. $X=\{1,2,3,4,5,6\}; U=\{I,II,III,IV,V\}; f(I)=(1,2); f(II)=(2,3); f(III)=(3,1); f(IV)=(1,3); f(V)=(4,6)$
- **2.** $X=\{1,2,3,4,5\}$; $U=\{I,II,III,IV,V,VI\}$; f(I)=(2,3); f(II)=(3,1); f(III)=(1,2); f(IV)=(4,5); f(V)=(5,4); f(V)=(1,3)
- 3. $X=\{1,2,3,4,5\};$ $U=\{I,II,III,IV,V,VI,VII\};$ f(I)=(3,4); f(II)=(4,5); f(III)=(5,3); f(IV)=(5,5); f(V)=(1,2); f(VI)=(4,3); f(VI)=(2,1)

Наименование: экзамен

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения экзамена:

Вопросы к проведению экзамена:

- 1. Основные понятия теории множеств. Способы задания множеств.
- 2. Операции над множествами.
- 3. Диаграммы Венна. Законы алгебры множеств.
- 4. Сравнение бесконечных множеств. Мощность.
- 5. Бинарные отношения. Основные определения.
- 6. Свойства бинарных отношений.
- 7. Эквивалентность и порядок.
- 8. Операции над бинарными отношениями.
- 9. Основные понятия математической логики. Логические операции.
- 10. Законы алгебры высказываний.
- 11. Составление и решение логических уравнений.
- 12. Формулы логики. Отношения между ними.
- 13. Различные формы булевых функций.
- 14. Аналитическая запись булевой функции.
- 15. Математическая логика и анализ рассуждений.
- 16. Математическая логика и контактные схемы.
- 17. Основные понятия теории предикатов. Операции над предикатами.

- 18. Теоретико-множественный смысл и геометрическое изображение предикатов.
- 19. Кванторы. Равносильность квантифицированных предикатов. Отрицание.
- 20. Взвешенный граф и его матричное задание.
- 21. Минимизация матрицы смежности.
- 22. Связность графа.
- 23. Сильная связность графа.
- 24. Понятие графа, двудольного графа, гиперграфа, мографа.
- 25. Композиция простых графов (объединение, сумма, произведение).
- 26. Цикломатика. Исследование циклов в графе.
- 27. Построение коцикломатической матрицы.
- 28. Понятие дерева, остова, хорды, леса.
- 29. Дифференцирование графов и мографов.
- 30. Устойчивость, покрытия, паросочетания графа.
- 31. Вложение графов в прямоугольную решетку.
- 32. Критерии планарности графов.
- 33. Определение изоморфизма графов.
- 34. Раскраска вершин и ребер графа.
- 35. Характеризация реберности.
- 36. Характеризация раскраски графов.

При проведении диагностики освоения компетенций и оценки минимального уровня знаний могут быть использованы тестовые материалы:

- 1. Дано множество $M = \{a, b, \{c,d\}, e\}$. Какие из утверждений верны:

- a) $c \in M$; 6) $\{d\} \in M$; B) $\{a, e\} \subset M$; F) $\{c, d\} \subset M$.
 - 2. Определить мощность множества $M = \{a, b, \{c, d\}, e\}$.
 - 3. Выбрать верный вариант формулы для определения мощности булеана

B(A): a)
$$\mid B(A) \mid = \mid A \mid$$
; б) $\mid B(A) \mid = 2^{\mid A \mid}$; b) $\mid B(A) \mid = 2^{\mid A \mid -1}$; г) $\mid B(A) \mid = \mid A \mid^2$.

- 4. Определить мощность булеана множества $A = \{\{a, b\}, c\}$:
- 5. Могут ли повторяться элементы множества?
- 6. Является ли множество подмножеством самого себя?
- 7. Какое из утверждений верно для всех множеств A, B, C:
 - а) если $A \in B$ и $B \in C$, то $A \in C$;
- б) если $A \subseteq B$ и $B \subseteq C$, то $A \subseteq C$; в)

если
$$A\subseteq B$$
 и $B\in C$, то $A\in C$; г)

ни одно не верно.

- 8. Дано множество $M = \{x, \{y, z\}\}$. Какие из утверждений верны:

Bo	прос	1.	2.	3.	4.	5.	6	7	8
\mathbf{O}	гвет	ВΓ	4	Б	4	Нет	Да	Б	Б,Г

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы	Форма контроля	Количество баллов		
дисциплины		min	max	
Введение	Выполнение самостоятельной работы по теме	5	10	
Понятие математической модели объектов проектирования	Выполнение лабораторной работы	10	20	
Элементы теории множеств	Выполнение самостоятельной работы по теме	5	10	
Алгебраические системы	Выполнение лабораторной работы, контрольная работа.	10	20	
Элементы математической логики	Выполнение лабораторной работы	10	20	
Теория графов и модельных графов	Выполнение лабораторной работы Контрольная работа.	10	20	

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов		
Лабораторная работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите типового расчета даны правильные ответы не менее чем на 50% заданных вопросов		
Самостоятельная работа по теме	Самостоятельная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, выводы, оформленный в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения материалом.		
Контрольная работа	Продемонстрирован удовлетворительный уровень владения материалом. Правильно решено не менее 50% заданий		

Промежуточная аттестация по дисциплине проводится в форме экзамена. Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

	Оценка	Набрано баллов
--	--------	----------------

«отлично»	90-100
«хорошо»	75-89
«удовлетворительно»	60-74
«неудовлетворительно»	<60

Билет к экзамену включает 3 теоретических вопроса и 5 практических заданий (задач).

Промежуточная аттестация проводится в форме письменной работы.

Время на подготовку: 90 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки
	Обучающийся показал всестороннее, систематическое и глубокое
	знание учебного материала, предусмотренного программой,
	умение уверенно применять на их практике при решении задач
«онрицто»	(выполнении заданий), способность полно, правильно и
	аргументировано отвечать на вопросы и делать необходимые
	выводы. Свободно использует основную литературу и знаком с
	дополнительной литературой, рекомендованной программой
	Обучающийся показал полное знание теоретического материала,
	владение основной литературой, рекомендованной в программе,
	умение самостоятельно решать задачи (выполнять задания),
«хорошо»	способность аргументировано отвечать на вопросы и делать
(Wiepelmer/	необходимые выводы, допускает единичные ошибки,
	исправляемые после замечания преподавателя. Способен к
	самостоятельному пополнению и обновлению знаний в ходе
	дальнейшей учебной работы и профессиональной деятельности
	Обучающийся демонстрирует неполное или фрагментарное знание
	основного учебного материала, допускает существенные ошибки в
	его изложении, испытывает затруднения и допускает ошибки при
«удовлетворительно»	выполнении заданий (решении задач), выполняет задание при
	подсказке преподавателя, затрудняется в формулировке выводов.
	Владеет знанием основных разделов, необходимых для
	дальнейшего обучения, знаком с основной и дополнительной
	литературой, рекомендованной программой
	Обучающийся при ответе демонстрирует существенные пробелы в знаниях основного учебного материала, допускает грубые ошибки
	в формулировании основных понятий и при решении типовых
	задач (при выполнении типовых заданий), не способен ответить на
«неудовлетворительно»	наводящие вопросы преподавателя. Оценка ставится
«педдовлетворительно»	обучающимся, которые не могут продолжить обучение или
	приступить к профессиональной деятельности по окончании
	образовательного учреждения без дополнительных занятий по
	рассматриваемой дисциплине
	pacemarphibucinon ghodinisinite