МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>Теория принятия решений</u>

направление подготовки: 09.03.01 «Информатика и вычислительная техника»

направленность (профиль): **Автоматизированные системы обработки** информации и управления

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 3 зачетные единицы

Кафедра «Машиностроение и информационные технологии»

Составитель:

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

А.Г. Горбушин

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 09.03.01 «Информатика и вычислительная техника», профиль «Автоматизированные системы обработки информации и управления».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

Руководитель образовательной программы

А.Г. Горбушин

20.05.2025 г.

Аннотация к дисциплине

Название дисциплины	Теория принятия решений
Направление подготовки (специальность)	09.03.01 «Информатика и вычислительная техника»
Направленность (профиль/программа/специализаци я)	Автоматизированные системы обработки информации и управления
Место дисциплины	Дисциплина относится к дисциплинам по выбору части, формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» ООП.
Трудоемкость (з.е. / часы)	3 з.е. / 108 часов
Цель изучения дисциплины	Ознакомление с основными понятиями и методами теории принятия решений, с классами задач, которые могут быть решены с помощью теории принятия решений.
Компетенции, формируемые в результате освоения дисциплины	ПК-1.Способен выполнять работы и управлять работами по созданию (модификации) и сопровождению ИС, автоматизирующих задачи организационного управления и бизнес-процессы.
Содержание дисциплины (основные разделы и темы)	Этапы процесса принятия решений. Аксиоматическая теория рационального поведения. Задачи исследования операций и системного анализа. Многокритериальные решения при объективных моделях. Методы оценки и сравнения многокритериальных альтернатив. Методы и интеллектуальные системы принятия технических решений в условиях неопределенности.
Форма промежуточной аттестации	Зачет (5 семестр)

1. Цели и задачи дисциплины:

Целью освоения дисциплины является ознакомление с основными понятиями и методами теории принятия решений, с классами задач, которые могут быть решены с помощью теории принятия решений.

Задачи дисциплины:

- -приобретение теоретических знаний по теории принятия решений;
- -получение практических навыков применение методов теории принятия решений.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания
1.	методы решения задач принятия решений в условиях определенности
2.	методы решения многокритериальных задач
3.	методы решения задач принятия решений в условиях неопределенности
4.	методы решения задач принятия решений в условиях риска

Умения, приобретаемые в ходе освоения дисциплины

№ п/п	№ п/п Умения						
1.	Создавать математическую модель предметной области						
2.	Выбирать оптимальный метод решения задачи принятия решений						

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки						
1.	Разрабатывать алгоритм решения задачи принятия решений						
2.	Владеть программным обеспечением для работы с методами решения задач принятия решений						

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ПК-1.	ПК-1.1 Знать: архитектуру,	1,2,3,4	1,2	1,2
Способен выполнять	устройство и функционирование			
работы и управлять	вычислительных и			
работами по	информационных систем,			
созданию	программные средства и			
(модификации) и	платформы инфраструктуры			
сопровождению ИС,	информационных технологий			
автоматизирующих	организации, современные			
задачи	подходы и стандарты			
организационного	автоматизации организации,			
управления и бизнес-	современные языки			
процессы.	программирования, теорию баз			
	данных, основы современных			
	операционных систем, сетевые			
	протоколы и коммуникационное			
	оборудование			
	ПК-1.2. Уметь: проектировать			
	архитектуру, структуру и			
	алгоритмы функционирования			
	вычислительных и			

	1	ı	
информационных систем,			
разрабатывать инфраструктуру			
информационных технологий			
предприятия, применять			
современные подходы и			
стандарты автоматизации			
организации, проектировать			
информационное, программное и			
аппаратное обеспечение,			
оценивать объемы и сроки			
выполнения работ			
ПК-1.3. Владеть: навыками			
проектирования и реализации			
вычислительных и			
информационных систем,			
навыками создания программ на			
современных языках			
программирования, навыками			
работы с аппаратным и сетевым			
оборудованием, навыками			
создания баз данных, навыками			
проектирования дизайна			
информационных систем,			
навыками создания			
пользовательской документации			

3. Место дисциплины в структуре ООП:

Дисциплина относится к дисциплинам по выбору части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 3 курсе в 5 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): «Программирование дискретных структур», «Математическая логика и теория алгоритмов».

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): «Модели и методы анализа проектных решений».

4. Структура и содержание дисциплины

4.1 Структура лисшиплины

4	.1 Структура дисциплинь	1							
№ Раздел дисциплины.		о часов на раздел	Семестр		цела (в	часах	рудоем к) по ві аботы		Содержание самостоятельной
п/п	п/п Форма промежуточной		je M		конта	ктная			
	аттестации	Всего		лек	пр	ла б	КЧА	CPC	работы
1	2	3	4	5	6	7	8	10	11
1	Основные понятия и определения теории принятия решения. Этапы процесса принятия	10	5	2				8	Подготовка к лабораторной работе
						1			
	решений. Классификация								

	решений. Классификация						
	задач принятия решений.						
2	Аксиоматические теории	18	5	2	8	8	Выполнение
	рационального поведения.						лабораторной работы

3	Задачи исследования операций. Задачи линейные, нелинейные, дискретные.	10	5	2			8	Подготовка к лабораторной работе
4	Многокритериальные решения при объективных моделях.	16	5	2	8		6	Выполнение лабораторной работы
5	Методы оценки и сравнения многокритериальных альтернатив	8	5	2			6	Подготовка к лабораторной работе
6	Динамические задачи. Марковские модели принятия решений.	16	5	2	8		6	Выполнение лабораторной работы
7	Принятие решений в условиях неопределенности. Стохастическая, нестохастическая неопределенность.	18	5	2	8		8	Выполнение лабораторной работы
8	Методы и интеллектуальные системы принятия технических решений в условиях неопределенности.	10	5	2			8	Выполнение лабораторной работы
	Зачет	2				0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости или проводится в устной форме
	Итого	108		16	32	0,3	59,7	

4.2 Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1.	Основные понятия и определения теории принятия решения. Этапы процесса принятия решений. Классификация задач принятия решений.	ПК-1.1 ПК-1.2 ПК-1.3	1,2,3	1,2	1,2	Защита лабораторной работы
2.	Аксиоматические теории рационального поведения.	ПК-1.1 ПК-1.2 ПК-1.3	1-4	1,2	1,2	Защита лабораторной работы
3.	Задачи исследования операций. Задачи линейные, нелинейные, дискретные.	ПК-1.1 ПК-1.2 ПК-1.3	1,2	1,2	1,2	Защита лабораторной работы
4.	Многокритериальные решения при объективных моделях.	ПК-1.1 ПК-1.2 ПК-1.3	1-4	1,2	1,2	Защита лабораторной работы
5.	Методы оценки и сравнения многокритериальных альтернатив	ПК-1.1 ПК-1.2 ПК-1.3	1,2,3	1,2	1,2	Защита лабораторной работы

6.	Динамические задачи. Марковские модели принятия решений.	ПК-1.1 ПК-1.2 ПК-1.3	1,2,3	1,2	1	Защита лабораторной работы
7.	Принятие решений в условиях неопределенности. Стохастическая, нестохастическая неопределенность.	ПК-1.1 ПК-1.2 ПК-1.3	1,2,3	1,2	1	Защита лабораторной работы
8.	Методы и интеллектуальные системы принятия технических решений в условиях неопределенности.	ПК-1.1 ПК-1.2 ПК-1.3	1-4	1,2	1	Защита лабораторной работы

4.3 Наименование тем лекций, их содержание и объем в часах

Nº	№ раздела	е тем лекции, их содержание и ооъем в часах	Трудоемкость
7\-	дисциплины	Наименование лекций	(час)
1.	1	Основные понятия и определения теории принятия решений. Люди, принимающие решения 2. Альтернативы. Критерии. Оценки по критериям. Множество Эджворта- Парето. Типовые задачи принятия решений	2
2.	2	Этапы процесса принятия решений 2.Классификация задач принятия решений	2
3.	3	1. Аксиомы рационального поведения. Рациональный выбор. Функция полезности. Деревья решений 2. Нерациональное поведение. Эвристики и смещения	2
4.	4	1.Задачи исследования операций и системного анализа. Задачи линейные, нелинейные 2.Задачи нелинейные	2
5.	5	. Многокритериальные решения при объективных моделях. Подход исследования операций. Исследование решений на множестве Эджворта-Парето 2. Постановка многокритериальной задачи линейного программирования. Весовые коэффициенты важности	2
6.	6	1. Многокритериальная теория полезности (МАИТ). Основные этапы подхода (МАИТ). Построение однокритериальных функций полезности 2. Методы ранжирования многокритериальных альтернатив	2
7.	7	1. Принятие решений в условиях неопределенности.	2

		Стохастическая, нестохастическая неопределенность 2. Методы построения функции выбора в условиях стохастического риска	
8.	8	1. Методы и интеллектуальные системы принятия технических решений в условиях неопределенности. Метод анализа иерархий 2. Метод принятия решений на основе теории нечетких множеств в задачах принятия	2

		технических решений	
	Всего		16

4.4 Наименование тем практических занятий и объем в часах

Практические занятия учебным планом не предусмотрены.

4.5 Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоемкость (час)
1.	2	Задача линейного программирования	8
2.	4	Симплексный метод решения задачи линейного программирования	8
3.	6	Двойственная задача линейного программирования	8
4.	7	Многокритериальная задача линейного программирования	8
	Всего		32

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- защиты лабораторных работ;
- зачет.

Примечание: оценочные материалы (типовые варианты тестов, контрольных работ и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) Основная литература

- 1 О. В. Глебова. Методы принятия управленческих решений [Электронный ресурс] : учебное пособие / О. В. Глебова. Электрон. текстовые данные. Саратов: Вузовское образование, 2017. 274 с. 978-5-906172-20-4. Режим доступа: http://www.iprbookshop.ru/62071.html
- 2 С. М. Бородачёв. Теория принятия решений [Электронный ресурс] : учебное пособие / С. М. Бородачёв. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2014. 124 с. 978-5-7996-1196-5. Режим доступа: http://www.iprbookshop.ru/69763.html

б) Дополнительная литература

1 Н. Н. Секлетова. Системный анализ и принятие решений [Электронный ресурс] : учебное пособие / Н. Н. Секлетова, А. С. Тучкова. — Электрон. текстовые данные. — Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. — 83 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/75407.html

в) методические указания

1. Исенбаева Е.Н. Методические указания к лабораторным работам для студентов, обучающихся по направлению 09.03.01 «Информатика и вычислительная техника», всех форм обучения при изучении профессиональных дисциплин. Ижевск: ИжГТУ, 2019 (Элект. издание) Рег.номер 046/53-ИИВТ

г) Перечень ресурсов информационно-коммуникационной сети Интернет

1. Электронно-библиотечная система IPRbooks

http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks

- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r_12/cgiirbis_64.exe?
 LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Национальная электронная библиотека http://нэб.pф
- 4. Мировая цифровая библиотека http://www.wdl.org/ru
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru

д) лицензионное и свободно распространяемое программное обеспечение

- 1. LibreOffice
- 2. Doctor Web Enterprise Suite

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебнонаглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используется аудитория № 204, оснащенная следующим оборудованием: доской, компьютерами с возможностью подключения к сети «Интернет», столами, стульями.

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова;
- помещение для самостоятельной работы обучающихся

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психологомедико-педагогической комиссии (ПМПК).

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Теория принятия решений

наименование – полностью

направление <u>09.03.01 «Информатика и вычислительная техника»</u>
код, наименование – полностью
профиль Автоматизированные системы обработки информации и управления
наименование – полностью
уровень образования: бакалавриат
форма обучения: очная
очная/очно-заочная/заочная

общая трудоемкость дисциплины составляет: 3 зачетные единицы

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1	ПК-1. Способен выполнять работы и управлять работами по созданию (модификации) и сопровождению ИС, автоматизирующих задачи организационного управления и бизнес-процессы.	31:методы решения задач принятия решений в условиях определенности; 32:методы решения многокритериальных задач; 33:методы решения задач принятия решений в условиях неопределенности; 34:методы решения задач принятия решений в условиях риска; У1:создавать математическую модель предметной области; У2:выбирать оптимальный метод решения задачи; Н1:разрабатывать алгоритм решения задачи принятия решений; Н2:программным обеспечением для решения задач принятия решений	Защита лабораторной работы. Зачет

Типовые задания для оценивания формирования компетенций

Наименование: зачет

Перечень вопросов для проведения зачета:

- 1. Этапы процесса принятия решений. Классификация задач принятия решений.
- 2. Нерациональное поведение. Эвристики и смещения. Причины нерационального поведения человека.
- 3. Критерии. Альтернативы. Оценки по критериям. Множество Эджворта-Парето.
- 4. Классификация задач принятия решений по виду $F: X \to R$, где F отображение множества допустимых альтернатив во множество критериальных оценок.
- 5. Теория проспектов. Весовая функция вероятности.
- 6. MAUT. Построение однокритериальных функций полезности. Проверка условий независимости. Определение весовых коэффициентов критериев. Преимущества и недостатки MAUT.
- 7. Задачи принятия решений с субъективными моделями. Типы задач. Три способа построения моделей задач принятия решений с субъективными моделями.
- 8. Задачи принятия решений в условиях определенности. Подход исследования операций.
- 9. Задачи принятия решений в условиях риска. Аксиомы рационального поведения. Деревья решений.
- 10. Задачи принятия решений в условиях неопределенности. Метод анализа иерархий. Типы иерархий. Способы изображения иерархий.
- 11. Метод анализа иерархий. Сравнение объектов относительно стандартов.
- 12. Метод анализа иерархий. Сравнение альтернатив методом копирования.
- 13. Метод анализа иерархий. Матрицы парных сравнений. Шкала отношений.
- 14. Задачи принятия решений в условиях неопределенности. Метод принятия решений на основе теории нечетких множеств. Операции над нечеткими множествами.

- 15. Математическая постановка ЗПР в условиях неопределенности на основе теории нечетких множеств. Этапы процесса принятия решений.
- 16. Нечеткие отношения. Свойства нечетких отношений.
- 17. Методы построения функции выбора в условиях стохастического риска. Принцип стохастического доминирования.
- 18. Построение функций выбора в условиях стохастической неопределенности. Принцип среднего результата, кучности результата, вероятностно-гарантированного результата.
- 19. Применение методов исследования операций в многокритериальных задачах.

Особенности моделей многокритериальных задач.

- 20. Постановка многокритериальной задачи линейного программирования. Человеко-машинные процедуры (ЧМП) Классификация ЧМП.
- 21. Классификация ЧМП. Процедуры поиска удовлетворительных значений критериев.
- 22. Прямые человеко-машинные процедуры. Процедуры оценки векторов.

Критерии оценки:

Приведены в разделе 2

Наименование: защита лабораторных работ

Представление в ФОС: задания и требования к выполнению представлены в методических указаниях по дисциплине

Варианты заданий:

- 1. Структура задачи линейного программирования
- 2. Геометрическая интерпретация задачи линейного программирования
- 3. Постановка задачи линейного программирования
- 4. Преобразования задачи линейного программирования
- 5. Построение двойственной задачи
- 6. Связь прямой и двойственной задач линейного программирования
- 7. Алгоритм симплексного метода.
- 8. Какие задачи решаются симплекс-методом?
- 9. Как строится исходная симплекс-таблица?
- 10. Как осуществляется переход к следующему шагу и заполнение новой симплекс-таблицы?
- 11. Как найти решение двойственной задачи, решая исходную задачу линейного программирования?
- 12. Постановка многокритериальной задачи
- 13. Отличие задачи с векторным критерием от задачи со скалярным критерием
- 14. Методы решения многокритериальных задач

Критерии оценки:

Приведены в разделе 2

Наименование: оценочные материалы для оценки уровня сформированности компетенций

Представление в ФОС: перечень заданий

Проведение работы, заключающейся в ответе на вопросы теста:

- 1. Выберите правильный ответ. Коэффициенты целевой функции прямой задачи линейного программирования становятся:
- А. Переменными двойственной задачи
- Б. свободными членами ограничений двойственной задачи В. свободными членами ограничений прямой задачи
- Г. Коэффициентами целевой функции двойственной задачи
- 2. Выберите правильный ответ. Каноническая форма задачи линейного программирования это когда система ограничений содержит:
- А. Только строгие неравенства

- Б. Только нестрогие неравенства
- В. Только равенства
- Г. Равенства и неравенства
- 3. Выберите один правильный ответ. Изменение направления оптимизации в задаче линейного программирования- это:
 - А. Изменение управляемых переменных
 - Б. Ограничение переменных знаком
 - В. Переход от максимизации к минимизации и наоборот
 - Г. Ввод балансовых переменных
- 4. Выберите один правильный ответ. Направление вектора нормали целевой функции задачи линейного программирования указывает:
 - А. Направление параллельного перемещения прямой, соответствующее уменьшению целевой функции
 - Б. Месторасположение точки начала координат
 - В. Направление параллельного перемещения прямой, соответствующее увеличению целевой функции
 - Г. Месторасположение максимального значения целевой функции
- 5. Выберите один правильный ответ. Признак неограниченности целевой функции в задаче максимизации:
 - А. Положительные симплексные разности
 - Б. Отрицательные симплексные разности
 - В. Нулевые симплексные разности в базисных столбцах
 - Г. Отрицательные симплексная разность и коэффициенты в направляющем столбце
- 6. Выберите один или несколько правильных ответов. Введение искусственных переменных в задаче линейного программирования необходимо, если ограничения представляют из себя:
 - А. Неравенства типа >=
 - Б. Неравенства типа <=
 - В. Неравенства типа >= или равенства
 - Г. Равенства
- 7. Выберите один правильный ответ. При нахождении минимального значения функции искусственные переменные вводят в целевую функцию:
 - А. С очень большими по величине отрицательными коэффициентами
 - Б. С очень большими по величине положительными коэффициентами В. С нулевыми коэффициентами
 - Г. С единичными коэффициентами
- 8. Выберите один правильный ответ. При нахождении максимального значения функции балансовые переменные вводят в целевую функцию:
 - А. С очень большими по величине отрицательными коэффициентами
 - Б. С очень большими по величине положительными коэффициентами
 - В. С нулевыми коэффициентами
 - Г. С единичными коэффициентами
- 9. Выберите один правильный ответ. Решение двойственной задачи для задачи линейного программирования находится:
 - А. В столбцах балансовых и искусственных переменных
 - Б. В столбцах только балансовых переменных
 - В. В столбцах только искусственных переменных

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы	Δ	Количество баллов	
дисциплины	Форма контроля	min max	
2	Лабораторная работа № 1	10	20
4	Лабораторная работа № 2	10	20
6	Лабораторная работа № 3	15	30
7	Лабораторная работа № 4	15	30
	Итого:	50	100

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, Показатели выставления минимального количества баллов	
назначение	
Лабораторная работа	Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые этапы, выводы, оформленный в соответствии с установленными требованиями; Продемонстрирован удовлетворительный уровень владения материалом при защите лабораторной работы, даны правильные ответы не менее чем на 50% заданных вопросов.

Промежуточная аттестация по дисциплине проводится в форме зачета.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	85–100
«не зачтено»	43–84

Если сумма набранных баллов менее 43 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 43 до 84 баллов – обучающийся допускается до зачета.

Промежуточная аттестация проводится в письменной форме. По сумме набранных баллов студенту может быть выставлена оценка за промежуточную аттестацию, согласно приведенной шкале. Обучающийся имеет право сдать зачет в письменной форме для изменения балла.

Билет к зачету включает 2 теоретических вопроса и 1 практическую задачу. Время на подготовку: 60 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки	
	Обучающийся демонстрирует знание основного учебно-программного	
«зачтено»	материала в объеме, необходимом для дальнейшей учебы, умеет	
"Sa Hello"	применять его при выполнении конкретных заданий, предусмотренных	
	программой дисциплины	

Обучающийся демонстрирует значительные пробелы в знаниях основного учебно-программного материала, допустил принципиальные ошибки в выполнении предусмотренных программой заданий и не способен продолжить обучение