#### МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)



# РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ЭВМ и периферийные устройства

направление подготовки: <u>09.03.01 «Информатика и вычислительная</u> техника»

направленность (профиль): **Автоматизированные системы обработки информации и управления** 

уровень образования: бакалавриат

форма обучения: очная

общая трудоемкость дисциплины составляет: 4 зачетные единицы

Кафедра «Машиностроение и информационные технологии»

#### Составитель:

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по

направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.01 «Информатика и вычислительная техника» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

А.Г. Горбушин

15.04.2025 г.

#### СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 09.03.01 «Информатика и вычислительная техника», профиль «Автоматизированные системы обработки информации и управления».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

А.Г. Горбушин

Руководитель образовательной программы

20.05.2025 г.

## Аннотация к дисциплине

| Название дисциплины        | ЭВМ и периферийные устройства                     |
|----------------------------|---------------------------------------------------|
| Направление подготовки     | 09.03.01 «Информатика и вычислительная техника»   |
| (специальность)            |                                                   |
| Направленность             | Автоматизированные системы обработки информации и |
| (профиль/программа/специ   | управления                                        |
| ализация)                  |                                                   |
| Место дисциплины           | Дисциплина относится к части формируемой          |
|                            | участниками образовательных отношений Блока 1     |
|                            | «Дисциплины (модули)» ООП.                        |
| Трудоемкость (з.е. / часы) | 4 з.е. / 144 часа                                 |
| Цель изучения дисциплины   | Подготовка специалиста с современными знаниями    |
|                            | основ построения и функционирования аппаратных    |
|                            | средств вычислительной техники, с высокой         |
|                            | квалификацией и с широким теоретическим           |
|                            | кругозором, способным осваивать новое в науке и   |
|                            | технике.                                          |
| Компетенции,               | ПК-1 Способен выполнять работы и управлять        |
| формируемые в результате   | работами по созданию (модификации) и              |
| освоения дисциплины        | сопровождению ИС, автоматизирующих задачи         |
|                            | организационного управления и бизнес-процессы.    |
| Содержание дисциплины      | Концепция построения микропроцессорных устройств; |
| (основные разделы и темы)  | Элементная база электронной аппаратуры;           |
|                            | Комплектующие ПК; Периферийные устройства.        |
| Форма промежуточной        | Экзамен (5 семестр)                               |
| аттестации                 |                                                   |

#### 1. Цели и задачи дисциплины:

**Целью** освоения дисциплины является подготовка специалиста с современными знаниями основ построения и функционирования аппаратных средств вычислительной техники, с высокой квалификацией и с широким теоретическим кругозором, способным осваивать новое в науке и технике.

#### Задачи дисциплины:

- ознакомление студентов с основными принципами организации аппаратного обеспечения ЭВМ, принципами работы периферийных устройств и их взаимодействия в составе системы.
- формирование комплекса знаний, умений и навыков, связанных с применением средств современной вычислительной техники, необходимых для правильного использования электронно-вычислительных машин и их модернизации.

## 2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

#### Знания, приобретаемые в ходе изучения дисциплины

| №<br>П/П | Знания                              |
|----------|-------------------------------------|
| 1.       | основы построения и архитектуры ЭВМ |
| 2.       | элементную базу ЭВМ и комплектующие |
| 3.       | периферийные устройства             |

Умения, приобретаемые в ходе изучения дисциплины

| <b>№</b><br>П/П | Умения                                                                    |
|-----------------|---------------------------------------------------------------------------|
| 1.              | разрабатывать технические задания на оснащение компьютерным оборудованием |
| 2.              | диагностировать и настраивать программно-аппаратные комплексы             |

Навыки, приобретаемые в ходе изучения дисциплины

| № П/П | Навыки                                                                 |
|-------|------------------------------------------------------------------------|
| 1.    | приёмами программирования и отладки программ на аппаратном уровне      |
| 2.    | методами и средствами разработки и оформления технической документации |

Компетенции, приобретаемые в ходе освоения дисциплины

| Компетенции      | Индикаторы                                 | Знания | Умения | Навыки |
|------------------|--------------------------------------------|--------|--------|--------|
|                  |                                            |        |        |        |
| ПК-1 Способен    | ПК-1.1 Знать: архитектуру, устройство и    | 1,2,3  | 1,2    | 1,2    |
| выполнять работы | функционирование вычислительных и          |        |        |        |
| и управлять      | информационных систем, программные         |        |        |        |
| работами по      | средства и платформы инфраструктуры        |        |        |        |
| созданию         | информационных технологий организации,     |        |        |        |
| (модификации) и  | современные подходы и стандарты            |        |        |        |
| сопровождению    | автоматизации организации, современные     |        |        |        |
| ИС,              | языки программирования, теорию баз данных, |        |        |        |
| автоматизирующи  | основы современных операционных систем,    |        |        |        |
| х задачи         | сетевые протоколы и коммуникационное       |        |        |        |
| организационного | оборудование                               |        |        |        |
| управления и     | ПК-1.2 Уметь: проектировать архитектуру,   |        |        |        |
| бизнес-процессы. | структуру и алгоритмы функционирования     |        |        |        |

| вычислительных и информационных систем,    |  |  |
|--------------------------------------------|--|--|
| разрабатывать инфраструктуру               |  |  |
| информационных технологий предприятия,     |  |  |
| применять современные подходы и стандарты  |  |  |
| автоматизации организации, проектировать   |  |  |
| информационное, программное и аппаратное   |  |  |
| обеспечение, оценивать объёмы и сроки      |  |  |
| выполнения работ                           |  |  |
| ПК-1.3 Владеть: навыками проектирования и  |  |  |
| реализации вычислительных и                |  |  |
| информационных систем, навыками создания   |  |  |
| программ на современных языках             |  |  |
| программирования, навыками работы с        |  |  |
| аппаратным и сетевым оборудованием,        |  |  |
| навыками создания баз данных, навыками     |  |  |
| проектирования дизайна информационных      |  |  |
| систем, навыками создания пользовательской |  |  |
| документации                               |  |  |

# 3. Место дисциплины в структуре ООП:

Дисциплина относится к части формируемой участниками образовательных отношений Блока 1 «Дисциплины (модули)» ООП.

Дисциплина изучается на 3 курсе в 5 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): «Физика», «Информатика», «Программирование», «Электротехника».

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): «Операционные системы», «Сети и телекоммуникации».

# 4. Структура и содержание дисциплины

# 4.1. Структура дисциплины

| <b>№</b><br>п/п | Раздел<br>дисциплины.<br>Форма<br>промежуточной<br>аттестации | Всего часов на<br>раздел | Семестр | p        | аздел<br>у<br>конт | а (в ча<br>чебно<br>тактна | е трудоем<br>асах) по в<br>й работы<br>я<br>КЧА |    | Содержание самостоятельной работы                                    |
|-----------------|---------------------------------------------------------------|--------------------------|---------|----------|--------------------|----------------------------|-------------------------------------------------|----|----------------------------------------------------------------------|
| 1               | 2                                                             | 3                        | 4       | лек<br>5 | пр<br>6            | лаб<br>7                   | 8<br>8                                          | 10 | 11                                                                   |
| 1.              | Концепция построения микропроцессор ных устройств             | 22                       | 5       | 4        | 4                  | 4                          | U                                               | 10 | Подготовка к лабораторной работе, подготовка к практическим занятиям |
| 2.              | Элементная база электронной аппаратуры                        | 22                       | 5       | 4        | 4                  | 4                          |                                                 | 10 | Подготовка к лабораторной работе, подготовка к практическим занятиям |
| 3.              | Комплектующие<br>ПК                                           | 32                       | 5       | 4        | 4                  | 4                          |                                                 | 20 | Подготовка к лабораторной работе, подготовка к практическим занятиям |

| 4. | Периферийные<br>устройства | 32  | 5 | 4  | 4  | 4  |     | 20   | Подготовка к лабораторной работе, подготовка к практическим занятиям                                                     |
|----|----------------------------|-----|---|----|----|----|-----|------|--------------------------------------------------------------------------------------------------------------------------|
| 5. | Экзамен                    | 36  | 5 |    |    |    | 0,4 | 35,6 | Экзамен выставляется по совокупности результатов текущего контроля успеваемости или проводится в устной форме по билетам |
| 6. | Итого                      | 144 |   | 16 | 16 | 16 | 0,4 | 95,6 |                                                                                                                          |

# 4.2. Содержание разделов курса и формируемых в них компетенций

|          |                                                  |                                      | <u> </u> |        |        |                                                                                 |
|----------|--------------------------------------------------|--------------------------------------|----------|--------|--------|---------------------------------------------------------------------------------|
| №<br>п/п | Раздел<br>дисциплины                             | Коды<br>компетенции и<br>индикаторов | Знания   | Умения | Навыки | Форма<br>контроля                                                               |
| 1        | Концепция построения микропроцессорных устройств | ПК-1.1<br>ПК-1.2<br>ПК-1.3           | 1        | 1,2    | 1,2    | Работа на практических занятиях Защита лабораторных работ Подготовка к экзамену |
| 2        | Элементная база электронной аппаратуры           | ПК-1.1<br>ПК-1.2<br>ПК-1.3           | 2        | 1,2    | 1,2    | Работа на практических занятиях Защита лабораторных работ Подготовка к экзамену |
| 3        | Комплектующие<br>ПК                              | ПК-1.1<br>ПК-1.2<br>ПК-1.3           | 2,3      | 1,2    | 1,2    | Работа на практических занятиях Защита лабораторных работ Подготовка к экзамену |
| 4        | Периферийные<br>устройства                       | ПК-1.1<br>ПК-1.2<br>ПК-1.3           | 3        | 1,2    | 1,2    | Работа на практических занятиях Защита лабораторных работ Подготовка к экзамену |

# 4.3. Наименование тем лекций, их содержание и объем в часах

| №<br>п/п | № раздела<br>дисциплины | Наименование лекций                               | Трудоемкость<br>(час) |
|----------|-------------------------|---------------------------------------------------|-----------------------|
| 1.       | Концепция               | 1. Концепция открытой архитектуры.                | 4                     |
|          | построения              | 2. Процессор, системная шина, оперативная память. |                       |

|    | Всего             | 1 1                                                              | 16 |
|----|-------------------|------------------------------------------------------------------|----|
|    |                   | 5. Сканирующие устройства.                                       |    |
|    |                   | 3. Проекторы.<br>4. Печатающие устройства.                       |    |
|    | устройства:       | 2. Устройства ввода.                                             |    |
| 4. | Периферийные      | 1. Мониторы.                                                     | 4  |
| 4  | П1                | 5. Внешняя память.                                               | 4  |
|    |                   | 4. Сопроцессоры, контроллеры.                                    |    |
|    |                   | 3. Дочерние карты.                                               |    |
|    | ПК:               | 2. Типы корпусов системного блока.                               |    |
| 3. | Комплектующие     | 1. Система питания, стабилизатор.                                | 4  |
|    |                   | системы охлаждения, характеристики, материалы.                   |    |
|    |                   | 4. Выделение тепла на электронных компонентах,                   |    |
|    | 1 71              | 3. Логические элементы.                                          |    |
|    | аппаратуры:       | сырье, технологии изготовления микросхем.                        |    |
|    | электронной       | 2. Микросхемы, степень интеграции, материалы,                    |    |
| 2. | Элементная база   | 1. Радиоэлементы, характеристики.                                | 4  |
|    |                   | 6. Концепция кэш памяти.                                         |    |
|    |                   | к памяти.                                                        |    |
|    |                   | с внешними устройствами. 5. Аппаратные прерывания, прямой доступ |    |
|    | устройств:        | 4.Порты ввода/вывода и взаимодействие                            |    |
|    | микропроцессорных | 3. Понятие команды процессора и машинного кода.                  |    |

# 4.4. Наименование тем практических занятий, их содержание и объем в часах

| №<br>п/п | № раздела<br>дисциплины | Наименование практических работ                  | Трудоемкость<br>(час) |
|----------|-------------------------|--------------------------------------------------|-----------------------|
| 1.       | 1                       | Концепция построения микропроцессорных устройств | 4                     |
| 2.       | 2                       | Элементная база электронной аппаратуры           | 4                     |
| 3.       | 3                       | Комплектующие ПК                                 | 4                     |
| 4.       | 4                       | Периферийные устройства                          | 4                     |
|          | Всего                   |                                                  | 16                    |

# 4.5. Наименование тем лабораторных работ, их содержание и объем в часах

| №   | № раздела  | Наименование лабораторных работ                                                                                                                                 | Трудоемкость |
|-----|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| п/п | дисциплины |                                                                                                                                                                 | (час)        |
| 1.  | 1          | Изучение системы команд процессора Intel 80x86.                                                                                                                 | 4            |
|     |            | Работа с видеопамятью в текстовом режиме. Работа с прерываниями ROM BIOS.                                                                                       |              |
| 2.  | 2          | Изучение системы команд процессора Intel 80x86.                                                                                                                 | 4            |
|     |            | Работа с видеопамятью в графическом режиме. Работа с прерываниями ROM BIOS.                                                                                     |              |
| 3.  | 3          | Изучение системы команд процессора Intel 80x86.<br>Работа с портами ввода-вывода. Программирование<br>устройств на аппаратном уровне.                           | 4            |
| 4.  | 4          | Изучение системы команд процессора Intel 80x86. Работа с портами ввода-вывода. Программирование устройств на аппаратном уровне. Перехват аппаратных прерываний. | 4            |
|     | Всего      |                                                                                                                                                                 | 16           |

# 5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- коллоквиумы:
- 1. Концепция построения микропроцессорных устройств.
- 2. Элементная база электронной аппаратуры.
- 3. Комплектующие ПК.
- 4. Периферийные устройства.
- защиты лабораторных работ;
- экзамен.

Примечание: оценочные материалы (типовые варианты тестов, контрольных работ и др.) приведены в приложении к рабочей программе дисциплины. Промежуточная аттестация по итогам освоения дисциплины – экзамен.

### 6. Учебно-методическое и информационное обеспечение дисциплины:

### а) Основная литература

- 1. Горнец Н.Н. Г697 ЭВМ и периферийные устройства. Устройства ввода-вывода: учебник для студ. учреждений высш. проф. образования / Н.Н.Горнец, А.Г. Рощин. Электрон. текстовые данные. М.: Издательский центр «Академия», 2013. 224 с. (Сер. Бакалавриат). Режим доступа: <a href="http://www.academia-moscow.ru/ftp\_share/books/fragments/fragment\_19864.pdf">http://www.academia-moscow.ru/ftp\_share/books/fragments/fragment\_19864.pdf</a>
- 2. Мамойленко С.Н. ЭВМ и периферийные устройства [Электронный ресурс]: учебное пособие/ Мамойленко С.Н., Молдованова О.В.— Электрон. текстовые данные.— Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2012.— 106 с.— Режим доступа: <a href="http://www.iprbookshop.ru/40558">http://www.iprbookshop.ru/40558</a>

#### б) Дополнительная литература

1. Архитектура ЭВМ и систем [Электронный ресурс] : учебное пособие / Ю. Ю. Громов, О. Г. Иванова, М. Ю. Серегин [и др.]. — Электрон. текстовые данные. — Тамбов : Тамбовский государственный технический университет, ЭБС АСВ, 2012. — 200 с. — 2227-8397. — Режим доступа: http://www.iprbookshop.ru/64069.html

#### в) методические указания

1. Коробейников А.А. Методические указания по выполнению лабораторных работ, для обучающихся по направлению 09.03.01 «Информатика и вычислительная техника», всех форм обучения при изучении дисциплины «ЭВМ и периферийные устройства» – Ижевск: ИжГТУ, 2019 (Элект. издание) Рег.номер 052/53-ИИВТ

#### г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks <a href="http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks">http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks</a>
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС <a href="http://94.181.117.43/cgi-bin/irbis64r\_12/cgiirbis\_64.exe?">http://94.181.117.43/cgi-bin/irbis64r\_12/cgiirbis\_64.exe?</a> LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS
- 3. Национальная электронная библиотека <a href="http://нэб.pd">http://нэб.pd</a>
- 4. Мировая цифровая библиотека http://www.wdl.org/ru
- 5. Международный индекс научного цитирования Web of Science <a href="http://webofscience.com">http://webofscience.com</a>
- 6. Научная электронная библиотека eLIBRARY.RU <a href="https://elibrary.ru/defaultx.asp">https://elibrary.ru/defaultx.asp</a>
- 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru

#### д) лицензионное и свободно распространяемое программное обеспечение:

- 1. Microsoft Office Standard 2007
- 2. Doctor Web Enterprise Suite

#### 7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

2. Практические занятия.

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

3. Лабораторные работы.

Для лабораторных занятий используется аудитория № 209, оснащенная следующим оборудованием: доской, компьютерами с возможностью подключения к сети «Интернет», столами, стульями.

4. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова;
- помещение для самостоятельной работы обучающихся

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

## МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

# Оценочные средства по дисциплине

# ЭВМ и периферийные устройства

наименование – полностью

| направление 09.03.01 «Информатика и вычислительная техника»          |  |  |
|----------------------------------------------------------------------|--|--|
| код, наименование – полностью                                        |  |  |
| профиль Автоматизированные системы обработки информации и управления |  |  |
| наименование — полностью                                             |  |  |
| уровень образования: бакалавриат                                     |  |  |
|                                                                      |  |  |
| форма обучения: очная                                                |  |  |
| очная/очно-заочная                                                   |  |  |
|                                                                      |  |  |

общая трудоемкость дисциплины составляет: 4 зачетные единицы

#### 1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

| <b>№</b><br>п/п | Коды<br>компетенции и<br>индикаторов | Результат обучения<br>(знания, умения и навыки)                                                                                                                                                                                                                                                                                                                                                              | Формы текущего и<br>промежуточного<br>контроля                    |
|-----------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1               | ПК-1.1<br>ПК-1.2<br>ПК-1.3           | 31:основы построения и архитектуры ЭВМ; 32:элементную базу ЭВМ и комплектующие; 33:периферийные устройства. У1:разрабатывать технические задания на оснащение компьютерным оборудованием; У2:диагностировать и настраивать программно-аппаратные комплексы. Н1:приёмами программирования и отладки программ на аппаратном уровне; Н2:методами и средствами разработки и оформления технической документации. | Работа на практических занятиях Защита лабораторных работ Экзамен |

Типовые задания для оценивания формирования компетенций

Наименование: экзамен

Представление в ФОС: перечень вопросов

### Перечень вопросов для проведения экзамена:

- 1. Какие компоненты всегда (независимо от типа, вида) присутствуют на материнской плате?
- 2. Что такое BIOS и зачем он нужен?
- 3. Что такое Chipset?
- 4. Что такое кэш и зачем он нужен?
- 5. Что такое PnP?
- 6. Что такое АТХ?
- 7. Что такое USB, AGP, ACPI?
- 8. Что такое IR Connector?
- 9. Можно ли использовать на плате прошивку BIOS от другой платы?
- 10. Что такое IRQ и DMA и как их распределять?
- 11. Что такое конфликты IRQ и как их избежать?
- 12. Что такое Bus Mastering?
- 13. Что такое Shadow Memory?
- 14. Чем импульсный стабилизатор отличается от линейного?
- 15. На что следует обратить внимание при покупке системной платы?
- 16. Что такое ММХ?
- 17. Что такое "зафиксированный коэффициент умножения"?
- 18. Что такое разгон процессора и как он делается?
- 19. Как лучше выбрать частоту платы и внутренний множитель процессора?
- 20. Опасен ли разгон процессора для него самого или для платы?
- 21. Как следить за тем, чтобы процессор не перегрелся?
- 22. Как улучшить охлаждение процессора?
- 23. Что такое stepping?
- 24. Чем проверить надёжность работы процессора?
- 25. Что такое Retail- и ОЕМ-варианты?
- 26. Чем отличаются OEM и Retail-варианты поставки процессора?
- 27. Как устроена типовая видеокарта?
- 28. Что такое видео-ускоритель и зачем он нужен?

- 29. Можно ли использовать в компьютере две видеокарты?
- 30. На что следует обратить внимание при покупке монитора?
- 31. В чем разница между 24-разрядным и 32-разрядным кодированием цвета?
- 32. Достаточно ли 16.7 млн цветов для любого изображения?
- 33. Можно ли увеличить скорость работы видеоадаптера?
- 34. Что такое TV-tuner?
- 35. Что такое OSD?
- 36. Как устроена электронно-лучевая трубка?
- 37. Как устроена жидкокристаллическая панель?
- 38. Как устроена плазменная панель?
- 39. Каковы правила и нормы безопасности при работе с монитором?
- 40. Какие методы синтеза звука используются в звуковых платах и что такое модуляция?
- 41. Что такое МІДІ?
- 42. Какова структура современных звуковых плат?
- 43. Какие параметры характеризуют звуковую карту?
- 44. Что такое Full Duplex?
- 45. Что такое S/PDIF?
- 46. Как снизить уровень наводок от аппаратуры компьютера на звуковую карту?
- 47. Что такое эффект-процессор и зачем он нужен?
- 48. Какой микрофон нужен для звуковой карты?
- 49. Как устроен и работает современный винчестер?
- 50. Какие интерфейсы используются для винчестеров в IBM РС?
- 51. Почему на винчестере написано "320GB", а операционная система выдаёт "298,09GB"?
- 52. Как в винчестере дюймовой высоты умещается целых 32 головки?
- 53. Что такое РІО и DMA?
- 54. Что такое Block Mode?
- 55. Что означают режимы LBA и Large?
- 56. Как определить параметры винчестера, если нет документации?
- 57. Что означает термин "низкоуровневое форматирование"?
- 58. Что такое "32-bit access" в BIOS Setup?
- 59. Что такое RAID?
- 60. Стоит ли использовать возможность остановки винчестера в паузах?
- 61. Что обозначает параметр "Shock resistance"?
- 62. Отчего некоторые винчестеры даже при отключённом интерфейсном кабеле издают характерные звуки позиционирования головок?
- 63. Каковы наиболее распространённые проблемы с винчестерами?
- 64. Почему на диск с FAT входит меньше данных, чем его объем?
- 65. Как устроен компакт-диск?
- 66. Как устроен привод CD-ROM?
- 67. Почему при работе CD-ROM диск вращается с разной скоростью?
- 68. Что означает "n-скоростной" CD-ROM?
- 69. Можно ли визуально определить качество оптического диска?
- 70. Что такое CD-R, CD-RW, DVD-R, DVD-RW b Blu-ray?
- 71. Можно ли считать со звукового диска звук в цифровом виде?
- 72. Принцип записи на магнитооптический диск?
- 73. Как устроен струйный принтер и какую бумагу можно использовать для печати?
- 74. Можно ли перезаправлять картриджи к струйным принтерам?
- 75. Как устроен лазерный принтер и какую бумагу нужно использовать для печати?
- 76. Как устроен сканер?
- 77. Как устроена оптическая мышь?
- 78. Как устроена стандартная клавиатура?

#### Критерии оценки:

Приведены в разделе 2

Наименование: работа на практических занятиях: коллоквиум

Представление в ФОС: перечень заданий

#### Варианты заданий:

- Обоснуйте выбор модели процессора для решения различных задач.
- Обоснуйте выбор объёма оперативной памяти для решения различных задач.
- Обоснуйте выбор типа и объёма внешнего накопителя.
- Обоснуйте выбор мощности источника питания.
- Перечислите характеристики ПК. Обоснуйте выбор характеристики для каждого компонента ПК.
- Перечислите компоненты материнской платы. Отметьте совместимость каждого с другими.
- Обоснуйте выбор монитора для решения различных задач.
- Обоснуйте выбор принтера для различных областей применения.

#### Критерии оценки:

Приведены в разделе 2

Наименование: защита лабораторных работ

*Представление в ФОС*: задания и требования к выполнению представлены в методических указаниях по дисциплине

#### Варианты заданий:

С использованием встроенного ассемблера языка Borland Pascal в графическом видеорежиме 320×200 256 цветов, при обращении напрямую к видеопамяти, вывести изображение — первую букву фамилии, имени и отчества учащегося. Высота символов должна быть не менее 2/3 высоты экрана, толщина начертания символов 20–40 пикселей. Зафиксировать изображение на экране до нажатия любой клавиши. По завершении работы программа должна восстанавливать видеорежим (установить тот режим, который был до запуска программы).

- 1. Работа с видеопамятью в текстовом режиме.
- 2. Работа с видеопамятью в графическом режиме.
- 3. Работа с портами ввода-вывода. Программирование устройств на аппаратном уровне.
- 4. Перехват аппаратных прерываний

#### Критерии оценки:

Приведены в разделе 2

Наименование: оценочные материалы для оценки уровня сформированности компетенций

Представление в ФОС: перечень заданий

- 1. Периферийными устройствами НЕ являются:
- 1. графическая карта;
- 2. процессор, память, системная шина;
- 3. все устройства, подключенные к портам ввода/вывода;
- 4. принтер, клавиатура, мышь;
- 5. системный спикер.

# 2. На уровне электрических сигналов вычисления в ЭВМ происходят в:

- 1. цифровом шестнадцатеричном виде;
- 2. цифровом двоичном виде;
- 3. в двоичной, десятичной и шестнадцатеричной системах счисления;
- 4. в любой системе счисления;
- 5. нет правильного ответа.

#### 3. В вычислительной системе главным устройством является:

- 1. блок питания:
- 2. системная шина;
- 3. центральный процессор;
- 4. графический процессор;
- 5. арифметический сопроцессор;
- 6. весь системный блок.

#### 4. 1024 байта это:

- 1. 1Кб;
- 2. 1КБ;
- 3. 1КиБ;
- 4. все ответы верны.
- 5. нет правильного ответа.

#### 5. Системная шина:

- 1. передаёт информацию об адресах подключенных периферийных устройств;
- 2. передаёт данные между процессором, памятью и портами ввода/вывода;
- 3. передаёт информацию между процессором и периферийными (внутренними и внешними) устройствами;
- 4. поддерживает уровень электрического напряжения на стандартном значении;
- 5. является заземляющим устройством для всех электронных компонент компьютера.

## 6. Разрядность процессора в 64 бита означает:

- 1. ширину адресной шины в 64 бита;
- 2. что разряд процессора относительно высокий;
- 3. что все регистры общего назначения у процессора имеют такую же разрядность;
- 4. что он может выполнять только 64-битные вычисления с плавающей точкой;
- 5. нет правильного ответа.

### 7. Производительность процессора не зависит от:

- 1. частоты системной шины;
- 2. внутреннего множителя;
- 3. объёма кэша первого уровня;
- 4. количества ядер;
- 5. напряжения питания;
- 6. разрядности процессора.

#### 8. Твердотельный накопитель это:

- 1. устройство с использованием твердотельных SMT-деталей;
- 2. жесткий диск;
- 3. электронный диск, хранящий информацию по типу флэш-памяти;
- 4. гибрид HDD и SSD;
- 5. все варианты верны;
- 6. нет правильного ответа.

# 9. Пропускная способность интерфейса USB 2.0 в 480Мб/с означает возможность передачи данных:

- 1. со скоростью свыше 60МБ/с;
- 2. со скоростью до 60МБ/с;
- 3. со скоростью до 48МБ/с;
- 4. нет верного ответа;
- 5. все ответы верны.

#### 10. Степень интеграции микросхемы означает:

- 1. процент вовлеченности микросхемы в радиотехническое изделие;
- 2. процент вовлеченности радиотехнического изделия в один кристалл;
- 3. количество элементов схемы на один кристалл;
- 4. количество микросхем на одно электронное устройство;
- 5. количество транзисторов на 1см<sup>2</sup> площади кристалла.

#### 2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

| Разделы<br>дисциплины |                           | Форма контроля       | Ke | Количество баллов |     |
|-----------------------|---------------------------|----------------------|----|-------------------|-----|
|                       |                           |                      |    | min               | max |
| 1                     | Лабо                      | ораторная работа № 1 |    | 10                | 25  |
| 3                     | Лабо                      | ораторная работа № 2 |    | 10                | 25  |
| 6                     | 6 Лабораторная работа № 3 |                      |    | 15                | 25  |
| 7                     | Лабо                      | ораторная работа № 4 |    | 15                | 25  |
|                       | Ито                       | го:                  |    | 50                | 100 |

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

| H   | именование, По    | оказатели выставления минимального количества баллов              |
|-----|-------------------|-------------------------------------------------------------------|
| на  | значение          |                                                                   |
|     | Ла                | бораторная работа выполнена в полном объеме; Представлен отчет,   |
|     | бораторная работа | содержащий необходимые этапы, выводы, оформленный в               |
| Ла  |                   | соответствии с установленными требованиями; Продемонстрирован     |
|     |                   | удовлетворительный уровень владения материалом при защите         |
|     |                   | лабораторной работы, даны правильные ответы не менее чем на 50%   |
|     | 3a,               | данных вопросов.                                                  |
|     |                   | дания выполнены более чем наполовину. Присутствуют серьёзные      |
|     |                   | ошибки. Продемонстрирован удовлетворительный уровень владения     |
| Пра |                   | материалом.                                                       |
|     |                   | оявлены низкие способности применять знания и умения к выполнению |
|     |                   | конкретных заданий.                                               |
|     | На                | защите практической работы даны правильные ответы не менее чем    |
|     |                   | на 50% заданных вопросов                                          |

Промежуточная аттестация по дисциплине проводится в форме экзамена.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

| Оценка    | Набрано баллов |
|-----------|----------------|
| «отлично» | 90-100         |

| «хорошо»              | 80-89 |
|-----------------------|-------|
| «удовлетворительно»   | 55-79 |
| «неудовлетворительно» | 0-54  |

*Если сумма набранных баллов менее* 54 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов более 55, обучающийся допускается до экзамена, при условии, что выполнены и защищены лабораторные работы.

По сумме набранных баллов студенту может быть выставлена оценка за промежуточную аттестацию, согласно приведенной шкале. Обучающийся имеет право сдать экзамен в устной форме для изменения балла.

Промежуточная аттестация проводится в устной форме.

Билет к экзамену включает 2 теоретических вопроса.

Время на подготовку: 40 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

| Оценка                                | Критерии оценки                                             |  |
|---------------------------------------|-------------------------------------------------------------|--|
|                                       | Обучающийся показал всестороннее, систематическое и         |  |
|                                       | глубокое знание учебного материала, предусмотренного        |  |
|                                       | программой, умение уверенно применять на их практике при    |  |
| «отлично»                             | решении задач (выполнении заданий), способность полно,      |  |
| «оплично»                             | правильно и аргументировано отвечать на вопросы и делать    |  |
|                                       | необходимые выводы. Свободно использует основную            |  |
|                                       | литературу и знаком с дополнительной литературой,           |  |
|                                       | рекомендованной программой                                  |  |
|                                       | Обучающийся показал полное знание теоретического материала, |  |
|                                       | владение основной литературой, рекомендованной в программе, |  |
|                                       | умение самостоятельно решать задачи (выполнять задания),    |  |
| «хорошо»                              | способность аргументировано отвечать на вопросы и делать    |  |
| «хорошо»                              | необходимые выводы, допускает единичные ошибки,             |  |
|                                       | исправляемые после замечания преподавателя. Способен к      |  |
|                                       | самостоятельному пополнению и обновлению знаний в ходе      |  |
|                                       | дальнейшей учебной работы и профессиональной деятельности   |  |
|                                       | Обучающийся демонстрирует неполное или фрагментарное        |  |
|                                       | знание основного учебного материала, допускает существенные |  |
|                                       | ошибки в его изложении, испытывает затруднения и допускает  |  |
| «удовлетворительно»                   | ошибки при выполнении заданий (решении задач), выполняет    |  |
| , , , , , e z i z e p i i e i z i e i | задание при подсказке преподавателя, затрудняется в         |  |
|                                       | формулировке выводов. Владеет знанием основных разделов,    |  |
|                                       | необходимых для дальнейшего обучения, знаком с основной и   |  |
|                                       | дополнительной литературой, рекомендованной программой      |  |
|                                       | Обучающийся при ответе демонстрирует существенные           |  |
|                                       | пробелы в знаниях основного учебного материала, допускает   |  |
|                                       | грубые ошибки в формулировании основных понятий и при       |  |
|                                       | решении типовых задач (при выполнении типовых заданий), не  |  |
| «неудовлетворительно»                 | способен ответить на наводящие вопросы преподавателя.       |  |
|                                       | Оценка ставится обучающимся, которые не могут продолжить    |  |
|                                       | обучение или приступить к профессиональной деятельности по  |  |
|                                       | окончании образовательного учреждения без дополнительных    |  |
|                                       | занятий по рассматриваемой дисциплине                       |  |