МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электротехника и электроника

направление подготовки: <u>15.03.05 – Конструкторско-технологическое обеспечение машино-строительных производств</u>

направленность (профиль): Технологии цифрового проектирования и производства в машиностроении

уровень образования: бакалавриат

форма обучения: заочная

общая трудоемкость дисциплины составляет: 6 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Федоров Александр Борисович, ст. преподаватель

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

А.1.1 ороушин

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технологии цифрового проектирования и производства в машиностроении».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

А.Г. Горбушин

Руководитель образовательной программы

А.В. Овсянников

20.05.2025 г.

АННОТАЦИЯ К ДИСЦИПЛИНЕ

Название дисциплины	Электротехника и электроника
Направление (специаль-	15.03.05 Конструкторско-технологическое обеспечение ма-
ность) подготовки	шиностроительных производств.
Направленность (про-	Технология машиностроения
филь/программа/специа	-
лизация)	
Место дисциплины	Обязательная часть Блока 1. Дисциплины (модули)
Трудоемкость (з.е. / часы)	6 з.е. / 216 часов
Цели изучения дисциплины	1. Освоение теоретических основ электротехники и электроники 2. Приобретение знаний о конструкциях, принципах действия, параметрах и характеристиках различных электротехнических и электронных устройств
Компетенции, формируемые в результате освоения дисциплины	Знать: законы естественных и общеинженерных наук, основные закономерности, действующих в процессе конструирования и проектирования машиностроительных изделий, их влияние на качественные показатели и производственные затраты (ОПК 5.1) Уметь: применять естественнонаучные знания для конструирования и проектных расчетов изделий машиностроения, определения производственных затрат (ОПК 5.2) Владеть: навыками конструирования и проектных расчетов изделий машиностроения, определения производственных затрат (ОПК 5.3)
Содержание дисциплины (основные разделы и темы)	Основные определения. Анализ электрических цепей постоянного тока. Нелинейные электрические цепи постоянного тока. Электрические цепи однофазного переменного тока. Трехфазные цепи. Переходные процессы в линейных электрических цепях. Магнитные цепи Трансформаторы. Электрические машины постоянного тока. Электрические машины переменного тока. Полупроводниковые устройства. Типовые транзисторные каскады и узлы. Логические и запоминающие цифровые элементы. Силовые электронные устройства и источники вторичного электропитания. Основные понятия и определения. Выбор источника вторичного электропитания. Усилители постоянного тока. Импульсные усилители. Электромагнитная совместимость электронных приборов.
Форма промежуточной аттестации	Зачет / Зачет с оценкой

1. ЦЕЛИ И ЗАДАЧИ ДИСЦИПЛИНЫ

Цели преподавания дисциплины:

- 1. Освоение теоретических основ электротехники.
- 2. Приобретение знаний о конструкциях, принципах действия, параметрах и характеристиках основных типов электротехнических устройств.

Основные задачи курса:

- 1. Формирование у студентов необходимых знаний основных электротехнических законов и методов анализа электрических и магнитных цепей.
- 2. Усвоение принципов действия, свойств, областей применения и потенциальных возможностей основных электротехнических устройств и электроизмерительных приборов.

2. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

В результате освоения дисциплины у студента должны быть сформированы:

Знания, приобретаемые в ходе изучения дисциплины

№ n/n	Знания	
1.	основные законы электротехники для электрических и магнитных цепей;	
2.	основные типы электрических машин и трансформаторов и области их примене-	
	ния;	
3.	методы измерения электрических и магнитных величин;	
4.	принципы работы основных электрических машин и аппаратов, их рабочие и пус-	
	ковые характеристики;	
5.	принципы работы типовых электронных схем	

Умения, приобретаемые в ходе изучения дисциплины

№ n/n	Умения
1	разрабатывать принципиальные электрические и электронные схемы;-
2	проектировать типовые электрические устройства и электронные схемы;

Навыки, приобретаемые в ходе изучения дисциплины

№ n/n	Навыки
1	работы с электротехнической аппаратурой и электронными устройствами.

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индексы компетенций	Зна-	Уме-	Навы-
		ния	ния	ки
OTHE 5. CHOCOOCH HOHOMB	ОПК 5.1 Знать: законы естественных и об-	1-5		
30Balb OCHOBHBIC 3akOHO-	щеинженерных наук, основные закономерно-			
т мерности. Леиствующие в	сти, действующих в процессе конструирования и проектирования машиностроительных			
TROUGOGO INFOTOR HOUSE	изделий, их влияние на качественные показа-			
шиностроительных изде-	тели и производственные затраты			
лий требуемого качества,				
заданного количества при	ОПК 5.2 Уметь: применять естественнонауч-		1-2	
Hanmenburk Jarparak 00	ные знания для конструирования и проект-			
THECTBEHHOLO TOVAA.	ных расчетов изделий машиностроения,			
	определения производственных затрат			

ОПК 5.3 Владеть: навыками конструирования и проектных расчетов изделий машиностроения, определения производственных затрат
--

3. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП

Дисциплина относится к базовой части общепрофессионального цикла.

Для изучения дисциплины студент должен:

знать: элементы линейной и векторной алгебры, дифференциальное и интегральное исчисление;

уметь применять полученные знания элементарной и высшей математики для решения конкретных задач электротехники;

владеть: навыками работы с учебной литературой, навыками оперирования векторными величинами, навыками решения типовых задач дифференциального и интегрального исчислений.

Изучение дисциплины базируется на знаниях, полученных студентами при изучении дисциплин: математика, физика.

Освоение Электротехники и электроники необходимо как предшествующее для следующих дисциплин ООП: электроника и микропроцессорная техника.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

4.1. Разделы дисциплины и виды занятий

4.2. Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компе- тенции и ин- дикаторов	Знания	Умения	Навыки	Форма те- кущего кон- троля
1.	Анализ сложных электрических цепей с несколькими источниками энергии Метод непосредственного применения законов Кирхгофа. Метод контурных токов. Метод двух узлов. Метод эквивалентного генератора.	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Тест.
2.	Электрические цепи однофазного переменного тока . Сопротивление, индуктивность и емкость в цепи синусоидального тока . Резонансный режим. Мощность в цепи синусоидального тока	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Контрольная работа. Тест.
3.	Трехфазные цепи Соединение в звезду и в тре- угольник. Расчет трехфазной цепи. Мощность в трехфазных цепях.	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Защита лабора- торной работы. Тест.
4.	Магнитные цепи . Трансформаторы Расчет магнитных цепей. Конструкция трансформатора в режиме холостого хода. Работа трансформатора под нагрузкой. Специальные типы трансформатора.	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Защита лабораторной работы. Тест.
5.	Электрические машины постоянного и переменного- тока	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Тест. Зачет

	Устройство и принцип действия электрической машины постоянного тока. Механические характеристики электродвигателей постоянного тока Вращающееся магнитное поле. Асинхронные двигатели. Конструкция, принцип действия. Синхронные двигатели. Конструкция, принцип действия.					
6.	Электронные приборы и устройства Полупроводниковые диоды, тиристоры, биполярные транзисторы. Полевые транзисторы. Технологические основы и элементы полупроводниковой электроники	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-3	Контрольная работа. Тест.
7.	Типовые транзисторные каскады и узлы Усилительные каскады на биполярных транзисторах: с общей базой, с общим коллектором, с общим эмиттером, их частотные и усилительные свойства					Защита лабора- торной работы. Тест.
8.	. Логические и запоминающие цифровые элементы Запоминающие устройства. Комбинационные (сумматоры, распределители, дешифраторы) и последовательностные (триггеры, счетчики, регистры) цифровые узлы.					Защита лабораторной работы. Тест.
9.	Силовые электронные устройства и источники вторичного электропитания Основные понятия и определения. Выбор источника вторичного электропитания. Усилители постоянного тока. Импульсные усилители. Электромагнитная совместимость электронных приборов.					Тест. Зачет

4.3. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	Темы и содержание практических занятий	
3 сем	тестр	
1	Линейные цепи постоянного тока	1
	Расчет токов по законам Кирхгофа, методом контурных токов, методом узловых потен-	
	циалов. Баланс мощности.	
	Электрические цепи однофазного синусоидального тока	
	Расчет токов. Баланс активных и реактивных мощностей источника и приемников. По-	
	строение векторных диаграмм на комплексной плоскости.	
3	Трехфазные электрические цепи	1
	Расчет линейных и фазных токов и напряжений, активных и реактивных мощностей	

	каждой фазы и всей цепи. Построение векторных диаграмм на комплексной плоскости	
4	Однофазные трансформаторы	1
	Расчет основных характеристик однофазного трансформатора.	
	Всего за семестр	4
4 CE	MECTP	
1	Моделирующая программа EWB 5.12. Исследование полупроводниковых приборов	1
	Экспериментальное изучение электрических свойств диодов и транзисторов и определение их характеристик	
2	Выпрямители и стабилизаторы	1
	Изучение процессов, происходящих в схемах выпрямителей и полупроводниковых стабилизаторах	
3	Усилители	1
	Изучение работы операционного усилителя в инвертирующем и не инвертирующем включении, определение режимов работы элементов в сложных схемах усилителей	
4	Исследование комбинационных логических схем	1
	Реализация логических функций с помощью элементарных логических схем. Построение генераторов и формирователей импульсов на основе логических интегральных схем	
	ВСЕГО ЗА СЕМЕСТР	4

4.4. Наименование тем лабораторных занятий, их содержание и объем в часах

№ π/π	Темы и содержание лабораторных занятий	Кол-во часов
3 сем	естр	
1	Индукционный счетчик Изучение принципов работы однофазного индукционного счетчика.	1
2	Однофазный трансформатор Изучение принципов работы однофазного трансформатора. Опыты холостого хода и короткого замыкания.	1
3	Двигатели постоянного и переменного тока Устройство и принцип действия двигателей постоянного и переменного тока	1
4	Трехфазная цепь: соединение звездой Изучение режимов работы трехфазной цепи. Измерение линейных и фазных токов и напряжений.	1
	Всего за семестр	4
4 CEI	MECTP	
1	Полупроводниковый диод	1
	Изучение устройства и принципа действия. Снятие ВАХ полупроводникового диода.	
2	Биполярный транзистор	1
	Изучение устройства и принципа действия. Снятие входных и выходных характеристик.	
3	Генератор линейно-импульсного напряжения	1
	Изучение устройства и принципа действия генератор линейно-импульсного напряжения на динисторе. Снятие BAX.	
4	Симметричный мультивибратор	1
	Изучение устройства и принципа действия. Получение осциллограмм. Измерение параметров генерируемых импульсов.	
	Всего за семестр	4

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

Для контроля результатов освоения дисциплины проводятся:

- контрольная работа;
- защита лабораторных работ;
- тест;
- экзамен;
- зачет с оценкой.

Примечание: оценочные материалы приведены в приложении к рабочей программе дисциплины.

ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ПО ИТОГАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ — ЗАЧЕТ, ЗАЧЕТ С ОЦЕНКОЙ.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИ-ПЛИНЫ:

а) Основная литература

- 1. Касаткин А. С., Немцов М. В. Электротехника. М.: Академия, 2015 г., 544 стр.
- 2. Новожилов О. П, Электротехника и электроника. М.: Гардарики, 2015 г., 656 стр.

б) Дополнительная литература

- 1.Беневоленский С.Б., Марченко А.Л. Основы электротехники/ учебное пособие для втузов.- М.: Издательство Физико-математической литературы, 2006.-568 с.
- 2. Марченко А.Л. Основы электроники / учебное пособие для вузов.-М.: ДМК Пресс, 2008.-296 с.
- 3.Опадчий Ю.Ф., Глудкин О.П., Гуров А.И. Аналоговая и цифровая электроника/ учебник для вузов. М.: Радио и связь.1998.
- 4. Электротехника и основы электроники. //Под ред. Глудкина О. П., Соколова Б. П. Учебник для вузов.
- М.: Высшая школа, 1993
- 5. Майер Р.В., Кощеев Г.В. Учебные экспериментальные исследования по электротехнике и электронике. – Глазов: ГИЭИ, 2010. - 72 с.
- 6. Майер Р.В. Основы электроники. Курс лекций: учебно-методическое пособие. Глазов: ГГПИ, 2011. $80 \, \mathrm{c}$.

в) Электронные ресурсы:

- 1. . Новожилов О. П, Электротехника и электроника. М.: Гардарики, 2015 г., 656 стр. Режим доступа: http://www.iprbookshop.ru/13427. ЭБС «IPRbooks», по паролю
- 2. Марченко А.Л. Основы электроники / учебное пособие для вузов.-М.: ДМК Пресс, 2008.-296 с.— РЕ-жим доступа: http://www.iprbookshop.ru/17539.— ЭБС «IPRBOOKs», по паролю

7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МОДУЛЯ

$\mathcal{N} \underline{\diamond} \mathcal{N} \underline{\diamond}$	Наименование оборудованных учебных кабинетов, объектов для проведения занятий
П/П	с перечнем основного оборудования
1	Мультимедийные лекционные аудитории 301,209. Оборудование: доска, ноутбук,
1	проектор, экран.
	Учебные аудитории для проведения практических и лабораторных занятий, груп-
2	повых и индивидуальных консультаций, оборудованные доской, столами, стулья-
	ми (ауд. 307, 301, 203)
	Учебные аудитории для организации и проведения самостоятельной работы сту-
3	дентов, оборудованные доской, компьютерами с возможностью подключения к
	сети «Интернет», столами, стульями (ауд 209, 204).

Лист утверждения рабочей программы дисциплины на учебный год

Рабочая программа дисциплины (модуля) утверждена на ведение учебного процесса в учебном году:

Учебный год	« СОГЛАСОВАНО»: заведующий кафедрой, ответственной за РПД (подпись и дата)
2023 - 2024	
2024- 2025	

МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Кафедра «Автоматизированные системы управления»

УТВЕРЖДЕН на заседании кафедры 10.05. 2018 г., протокол № 5

Заведующий кафедрой

В.В.Беляев

Фонд оценочных средств

По дисциплине «Электротехника и электроника»

15.03.05 – КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ

ПРОФИЛЬ: ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ КВАЛИФИКАЦИЯ (СТЕПЕНЬ) ВЫПУСКНИКА: БАКАЛАВР

Содержание

		C.
1.	Паспорт фонда оценочных средств	3
2	Описание элементов фос	5
۷.	Officatific Sicincition 400	3
2	10	1.5
3.	Критерии оценки уровня освоения контролируемого материала	1/

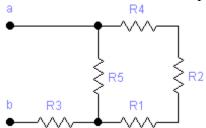
Паспорт фонда оценочных средств По дисциплине «Электротехника и электроника»

3 СЕМЕСТР

№ Π/π	№ Раз- дела	Наименование тем	Код контролируе- мой компетенции	Наименование оценочного средства
1.	1	ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ	ОПК-5,1-5,3	
2.	2	Эквивалентные преобразования схем	ОПК-5,1-5,3	
3.	3	Анализ электрических цепей по- стоянного тока с одним источни- ком энергии	ОПК-5,1-5,3	
4.	4	Анализ сложных электрических цепей с несколькими источника- ми энергии.	ОПК-5,1-5,3	
5.	5	Нелинейные электрические цепи постоянного тока.	ОПК-5,1-5,3	
6.	6	ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ОДНОФАЗНОГО ПЕРЕМЕННОГО ТОКА.	ОПК-5,1-5,3	
7.	7	ТРЕХФАЗНЫЕ ЦЕПИ	ОПК-5,1-5,3	
8.	8	Переходные процессы в линейных электрических цепях.	ОПК-5,1-5,3	
9.	9	Магнитные цепи	ОПК-5,1-5,3	
10.	10	ТРАНСФОРМАТОРЫ.	ОПК-5,1-5,3	
11.	11	ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯН- НОГО ТОКА.	ОПК-5,1-5,3	
12.	12	ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПЕРЕМЕН- НОГО ТОКА	ОПК-5,1-5,3	Контрольная рабо- та
13.	Разде	ЛЫ ЗА СЕМЕСТР	ОПК-5,1-5,3	Итоговый тест; Вопросы к зачету

4 CEMECTP

No	No		Код контролируе-	Наименование оце-
Π/π	Раз-	Наименование тем	мой компетенции	ночного средства
	дела			
1.	1	Основные понятия	ОПК-5,1-5,3	
2.	2	Электронные приборы и устройства	ОПК-5,1-5,3	
3.	3	Типовые транзисторные каскады и узлы	ОПК-5,1-5,3	
4.	4	Логические и запоминающие цифровые элементы	ОПК-5,1-5,3	
5.	5	Интерфейсные устройства	ОПК-5,1-5,3	
6.	6	Силовые электронные устройства и источники вторичного электропитания	ОПК-5,1-5,3	Итоговый тест

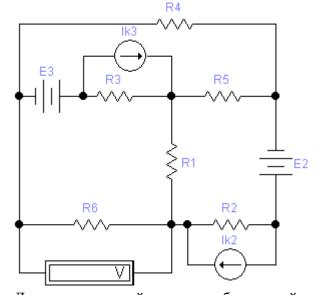

_				
	9.	Разделы за семестр	ОПК-5,1-5,3	Вопросы к экзамену

Описание элементов ФОС

3 семестр

Контрольная работа

Задача 1. Эквивалентное сопротивление электрической цепи

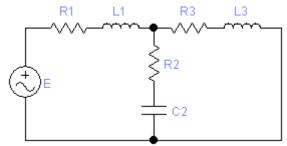

Для электрической схемы изображенной на рисунке:

1. Создать модель схемы в EWB 5.12. Произвести замеры сопротивления мультиметром в режиме омметра до и после преобразования.

2. Определить эквивалентное сопротивление цепи.

Don T	Рис.	R1	R2	R3	R4	R5	R6	R7	R8
Вар-т	гис.	Ом							
0	1.11	5	10	40	4	45	-	-	-

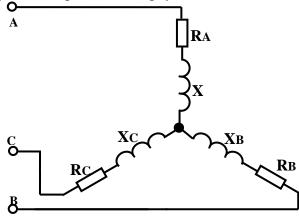
Задача 2. Линейные цепи постоянного тока


Для электрической схемы, изображенной на рисунке:

- 1. Создать модель схемы в EWB 5.12. Произвести преобразования и замеры токов и напряжения
- 2. Составить на основании законов Кирхгофа систему уравнений для расчета токов во всех ветвях схемы и найти их.
- 3. Определить токи во всех ветвях схемы методом контурных токов.
- 4. Определить токи во всех ветвях схемы методом узловых потенциалов.
- 5. Результаты расчета токов, проведенного всеми методами, свести в таблицу и сравнить между собой.
- 6. Составить баланс мощности в исходной схеме (схеме с источником тока), вычислив суммарную мощность источников и суммарную мощность нагрузок (сопротивлений).

7. Определить показания вольтметра.

№	Рис.	R1	R2	R3	R4	R5	R6	E1	E2	E3	IK1	IK2	IK3
		Ом						В			A		
	2.15	13	5	9	7	10	4	-	10	21	_	0	1


Задача 3. Электрические цепи однофазного синусоидального тока

Для электрической схемы, изображённой на рисунке создать модель схемы в EWB 5.12. Произвести замеры токов и напряжений, вычислить токи во всех ветвях. Составить баланс активных и реактивных мощностей, а также определить активную мощность, показываемую ваттметром. Для проверки правильности решения построить векторную диаграмму токов на комплексной плоскости.

Вар-т	Рис.	E,	f,	C1,	C2,	C3,	L1,	L2,	L3,	R1,	R2,	R3,
Бар-т	гис.	В	Гц	мкФ	мкФ	мкФ	мΓн	мΓн	мΓн	Ом	Ом	Ом
0	3.1	150	50	-	300	_	125	_	16,9	2	3	4

Задача 4. Трехфазные электрические цепи при соединении фаз симметричного или несимметричного приемника «треугольником» или «звездой»

Для электрической схемы, изображённой на рисунке создать модель схемы в EWB 5.12. Произвести замеры токов и напряжений, определить линейные и фазные токи, ток в нейтральном проводе (для 4-проводной схемы), активную и реактивную мощность каждой фазы и всей цепи

Ba-	Рис.	Uл,	Ra,	Rb,	Rc,	Xa,	Xb,	Xc,	Rab,	Rbc,	Rca,	Xab,	Xbc,	Xca,
р-т	гис.	В	Ом	Ом	Ом	Ом	Ом	Ом						
0	4.1	127	8	8	8	6	6	6	_	_	_	_	_	_

Задача 5. Определение параметров электрической цепи методом амперметра, вольтметра и ваттметра

Для определения параметров катушки использован метод амперметра, вольтметра и ваттметра. Амперметр: класс точности Ка, предел измерения Іка. Вольтметр: класс точности Кv, предел измерений Ukv. Ваттметр: класс точности Kw, пределы измерения по напряжению Ukw и по току Ikw. Показания приборов I, U, P. Определить:

- расчетные значения активного сопротивления R, полного сопротивления Z и коэффициента мощности сов ф катушки без учета влияния сопротивлении приборов;
- погрешности косвенного измерения сопротивления R, Z и соѕ φ;
- действительные значения R, Z и cos ф.

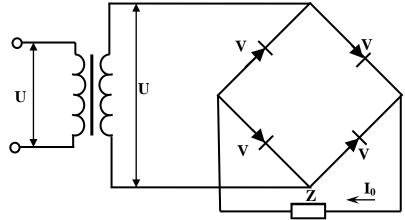
Вар-т	Данные	для расч	ета	·							
	Амперм	иетр		Вольтм	етр		Ваттметр				
	I, A	Ka	Ika, A	U, B	Kv	Ukv, B	Р, Вт	Kw	Ukw, B	Ikw, A	
0	2,4	0,5	2,5	125	0,5	150	180	0,5	150	2,5	

Задача 6. Однофазные трансформаторы

Произвести расчет основных характеристик однофазного трансформатора на максимальный КПД при коэффициенте нагрузки Кнг = 0.7, при заданной кон-фигурации магнитопровода и типе электротехнической стали. Первичное напряжение U1, частота f = 50 Гц. Кривые намагничивания стали при-ведены на рисунке, а вели-чина мощности удельных потерь в табл. 6.1.

Коэффициент заполнения пакета стали Kc = 0.9; удельный вес стали $yct = 7.8 \cdot 103 \text{ кг/м3}$.

Допустимая величина тока холостого хода 110 = (0.05 - 0.1) I1H. Эта величина определяется выбором рабочей точки на кривой намагничивания стали вблизи точки перегиба.


Определить:

- 1) номинальные токи в обмотках трансформатора;
- 2) ток холостого хода;
- 3) напряженность магнитного поля в сердечнике;
- 4) коэффициент трансформации и число витков вторичной обмотки трансформатора;
- 5) активное сечение магнитопровода и площадь поперечного сечения;
- 6) объем и массу стали сердечника и мощность потерь в стали;
- 7) номинальные потери в меди обмоток с учётом того, что расчет ведется на максимальный КПД трансформатора при коэффициенте загрузки КНГ = 0.7.

Построить кривые внешней характеристики U2 = f (КНГ) и зависимости КПД от коэффициента нагрузки $\eta = f$ (КНГ).

Вариант	SH, BA	III B	112 B	cos φ2	ℓср, м	tg φ1	Тип
Барнапт	511, 511	01, D	02, B	2 05 φ 2	оср, м	ις Ψ1	сердечника
1	100	127	12	0,80	0,35	1	C-3405

Задача 7. Однофазные выпрямители переменного тока

Создать модель однофазного мостового выпрямителя в EWB 5.12. Произвести замеры и рассчитать токи и напряжения, пронаблюдать осциллограммы входного и выходного напряжения и тока (скриншоты) по следующим исходным данным: среднее значение выпрямленного напряжения U0, среднее значение выпрямленного тока I0, действующее значение напряжения питающей сети U1, относительное отклонение напряжения сети в сторону повышения и понижения Umax и Umin, частота тока сети f. Значения исходных данных для различных вариантов приведены в табл. 7.1.

Вариант	U0, B	I0, A	U1, B	Umax	Umin	f, Гц
1	10	10	220	0,2	0,2	50

Задача 8. Асинхронные двигатели

Определить мощность, необходимую для привода механизма, работающего в продолжительном режиме с переменной нагрузкой; выбрать двигатель (АД) по каталогу. Произвести проверку выбранного двигателя по перегрузочной способности. Исходные данные в соответствии с заданным вариантом приведены в табл. 8.1

Вари-	M1,	M2,	M3,	M4,	t1,	t2,	t3,	t4,	nCH,
ант	Н∙м	Н∙м	Н·м	Н∙м	МИН	МИН	мин	мин	об/мин
1	300	420	250	150	1,5	1	2	0,9	420

Задача 9. Снижение реактивной мощности электрических сетей

Задача посвящена вопросу повышения коэффициента мощности.

К трехфазной линии с линейным напряжением Uл подключены два трехфазных двигателя с короткозамкнутым ротором, параметры которых и коэффициент загрузки КНГ приведены в табл.

- 9.1. Для компенсации реактивной мощности Q данной группы двигателей подключается батарея статических конденсаторов С (рис. 9.1). Определить:
- 1) величину реактивной мощности каждого АД для данной группы приемников (КНГ < 1);
- 2) величину емкости С батареи конденсаторов, включённых в одну фазу, при условии полной компенсации реактивной мощности для заданной системы загрузки двигателей.

Вар-т	Ил, В	РН1, кВт	КНГ1	cos φ1	рн1	РН2, кВт	КНГ2	cos φH2	рн2
0	380	100	0,7	0,9	0,93	55	0,6	0,9	0,9

Перечень контрольных вопросов для проведения зачета

- 1. Напряжения, потенциал, ЭДС, электрический ток, параметры электрической цепи, работа и мощность электрического тока.
- 2. Законы Кирхгофа, расчет цепей по уравнению Кирхгофа.
- 3. Источник ЭДС и тока
- 4. Согласования сопротивления источника и нагрузки.
- 5. Расчет цепей методом контурных токов.
- 6. Расчет цепей методом узловых потенциалов.
- 7. Расчет цепей методом наложения
- 8. Расчет цепей методом эквивалентного источника.
- 9. Основные параметры переменного тока.
- 10. Представления синусоидальной функции векторами и комплексными числами.
- 11. Мощности цепи переменного тока.
- 12. Сопротивление в цепи переменного тока.
- 13. Индуктивность в цепи переменного тока.
- 14. Емкость в цепи переменного тока.
- 15. Последовательное соединение R, L, С в цепи переменного тока.
- 16. Резонанс напряжений.
- 17. Резонанс токов.
- 18. Установившиеся и свободные составляющие токов и напряжения. Законы коммутативности.
- 19. Переходный процесс в RL цепи.
- 20. Переходный процесс в RC цепи.
- 21. Операторный метод расчета переходных процессов, переход от изображения к оригиналу.
- 22. Законы Ома и Кирхгофа в операторной форме.
- 23. Переходный процесс в RLC цепи.
- 24. Интегрирующие и дифференциальные цепи.
- 25. Расчет цепи при импульсных воздействиях.
- 26. Свойство чистых и примесных полупроводников p-n перехода.
- 27. Одно-тактовый выпрямитель, полупроводниковый диод.
- 28. Двух-тактовый выпрямитель.
- 29. Сглаживающие фильтры.
- 30. Параметрический стабилизатор напряжения.

Итоговый тест

- 1. Как изменится емкость и заряд на пластинах конденсатора, если напряжение на его зажимах увеличится?
- А) Емкость и заряд увеличатся; Б) Емкость уменьшится, заряд увеличится; В) Емкость останется неизменной, заряд увеличится; Г) Емкость останется неизменной, заряд уменьшится.

- 2. При неизменном напряжении увеличится расстояние между пластинами конденсатора. Как изменится при этом заряд конденсатора?
- А) Увеличится; Б) Не изменится; В) Уменьшится; Г) Сначала увеличится, а затем плавно уменьшится.
- 3. При последовательном соединении двух конденсаторов один из них оказался пробитым. Как изменится запас прочности другого конденсатора?
- А) Увеличится; Б) Уменьшится; В) Останется неизменным; Г) Уменьшится в два раза.
- 4. Длину и диаметр проводника увеличили в два раза. Как изменится сопротивление проводника?
- А) Не изменится; Б) Уменьшится в два раза; В) Увеличится в два раза; Г) Увеличится в четыре раза.
- 5. Какое явление приводит к увеличению сопротивления металлического проводника?
- А) Изменение напряженности электрического поля; Б) Уменьшение расстояния между ионами кристаллической решетки; В) Увеличение амплитуды колебаний ионов в узлах кристаллической решетки; Г) Изменение концентрации зарядов.
- 6. Зависит ли сопротивление катушки, изготовленной из медного провода, от приложенного к ней напряжения?
- А) Не зависит; Б) Зависит; В) Почти не зависит; Г) Зависит только при переменном напряжении.
- 7. Эквивалентное сопротивление двух параллельно включенных резисторов определяется соотношением:
- A) R1 + R2; B) R1 R2; B) R1 + R2/(R1 + R2); Γ) (R1 + R2)/R1 + R2.
- 8. Какой из проводов одинакового диаметра и длины сильнее нагреется медный или стальной при одном и том же токе?
- А) Медный; Б) Стальной; В) Оба провода нагреются одинаково; Г) Провода не будут нагреваться
- 9. При каком напряжении выгоднее передать энергию в линии при заданной мощности?
- А) При пониженном; Б) При повышенном; В) Безразлично; Г) При напряжении до 220 вольт.
- 10. Можно ли применить уравнения Кирхгофа для расчета цепей смешанного соединения?
- А) Можно; Б) Нельзя; В) Можно только с несколькими источниками ЭДС; Г) Можно только с одним источником ЭДС.
- 11. Являются ли контурные токи реальными токами ветвей?
- А) Да; Б) Нет; В) Это зависит от расположения ветви (внутреннее или внешнее); Г) Да, если направлены в одну сторону.
- 12. На сколько сокращается число уравнений при использовании метода контурных токов?
- А) На число узлов в схеме; Б) На число независимых контуров в схеме; В) На число узлов в схеме без одного; Г) На число независимых контуров в схеме без одного.

Когда можно воспользоваться методом узловых потенциалов?

- А) Когда сложная цепь содержит всего два источника; Б) Когда сложная цепь содержит всего два узла; В) Для расчета любой сложной цепи; Г) Для расчета цепи с одним источником ЭДС.
- 13. Как выбирается направление контурных токов?
- А) По часовой стрелке; Б) Против часовой стрелки; В) Произвольно; Г) По направлению тока в ветви.
- 14. Можно ли подобрать два нелинейных элемента, чтобы их общая вольт-амперная характеристика стала линейной?
- А) Можно; Б) Нельзя; В) Теоретически можно; Г) Практически нельзя.
- 15. Какой из приведенных материалов не проявляет ферромагнитных свойств?
- А) Кобальт; Б) Никель; В) Платина; Г) Железо.
- 16. Будет ли наводиться ЭДС индукции в проводнике, если он неподвижен, а магнитное поле перемещается относительно этого проводника?
- А) Не будет; Б) Это зависит от взаимного расположения проводника и поля; В) Будет; Г) Зависит от скорости перемещения магнитного поля.
- 17. Какой из параметров сильнее влияет на индуктивность катушки без сердечника?

- А) Длина; Б) Площадь сечения; В) Число витков; Г) Диаметр витков.
- 18. Как изменяется ЭДС самоиндукции при подключении катушки к источнику постоянного напряжения?
- А) Увеличивается; Б) Остается неизменной; В) Уменьшается; Г) ЭДС равна нулю.
- 19. Как изменится ток в катушке при введении сердечника?
- А) Увеличится; Б) Уменьшится; В) Останется неизменным; Γ) Сначала увеличится, а затем уменьшится.
- 20. Какой характер движения электрических зарядов в проводнике при переменном токе?
- А) Вращательный Б) Колебательный В) Поступательный Г) Прямолинейный
- 21. Из какой стали должен выполняться якорь генератора переменного тока?
- А) Из магнитотвердой; Б) Из магнитомягкой; В) Из любой; Г) Из немагнитной.
- 22. Являются ли параметры Τ, f и ω независимыми?
- А) Являются; Б) Не являются; В) Это зависит от числа пар полюсов генератора; Г) Это зависит от соединения обмоток генератора.
- 23. Как связана частота вращения вектора, изображающего синусоидальную величину, с ее угловой скоростью?
- А) Они независимы; Б) Частота вращения вектора пропорциональна угловой скорости; В) Частота вращения вектора равна угловой скорости; Г) Частота вращения вектора в два раза выше угловой частоты.
- 24. Какой параметр переменного тока необходимо знать дополнительно, чтобы по векторной диаграмме получить полное представление о переменном токе?
- А) Действующее значение; Б) Начальную фазу; В) Частоту вращения; Г) Максимальное значение.
- 25. В цепи с активным сопротивлением энергия источника преобразуется в энергию?
- А) Магнитного поля; Б) Электрического поля; В) Тепловую; Г) Магнитного и электрического полей.
- 26. Укажите параметр переменного тока, от которого зависит индуктивное сопротивление катушки?
- А) Действующее значение напряжения; Б) Фаза напряжения; В) Период переменного тока; Г) Действующее значение тока.
- 27. Какова природа тока, проходящего через диэлектрик конденсатора?
- А) Электронный ток проводимости; Б) Ток смещения; В) Ионный ток проводимости; Г) Электронный ток и ток смещения.
- 28. Чему равно сопротивления конденсатора без потерь постоянному току?
- А) Нулю; Б) Бесконечности; В) Это зависит от емкости конденсатора; Γ) Это зависит от величины тока.
- 29. Как изменится напряжение на участках RC цепи, если воздушный конденсатор поместить в масло?
- А) Напряжение на сопротивлении увеличится, на конденсаторе уменьшится; Б) Напряжение на сопротивлении уменьшится, на конденсаторе увеличится; В) Напряжения будут равны; Г) Напряжения не изменятся.
- 30. Как изменится резонансная частота колебательного контура, если емкость увеличится в четыре раза?
- А) Увеличится в четыре раза; Б) Уменьшится в четыре раза; В) Уменьшится в два раза; Г) Увеличится в два раза.

4 CEMECTP

Итоговый тест

- 1. ТРИГГЕРОМ НАЗЫВАЮТ УСТРОЙСТВО:
- А) с двумя устойчивыми состояниями
- Б) с одним устойчивым состоянием
- В) с тремя устойчивыми состояниями
- Г) БЕЗ УСТОЙЧИВЫХ СОСТОЯНИЙ

2. Коэффициент усиления по напряжению транзисторного каскада определяется по формуле:

$$K_{\rm U} = \frac{U_{\rm ex}}{U_{\rm eblx}}; \, K_{\rm U} = \frac{U_{\rm eblx}}{U_{\rm ex}}; \, K_{\rm U} = \frac{U_{\rm eblx}}{U_{\rm eblx}}; \, K_{\rm U} = \frac{U_{\rm eblx}}{U_{\rm eblx}}; \, \Gamma) \, K_{\rm U} = \beta \frac{U_{\rm ex}}{U_{\rm eblx}}$$

- 3. Полупроводниковый диод применяется в устройствах электроники для цепей...
- А) УСИЛЕНИЯ НАПРЯЖЕНИЯ
- Б) выпрямления переменного напряжения
- В) СТАБИЛИЗАЦИИ НАПРЯЖЕНИЯ
- Г) РЕГУЛИРОВАНИЯ НАПРЯЖЕНИЯ
- 4. Тиристор используется в цепях переменного тока для ...
- А) УСИЛЕНИЯ ТОКА
- Б) УСИЛЕНИЯ НАПРЯЖЕНИЯ
- В) РЕГУЛИРОВАНИЯ ВЫПРЯМЛЕННОГО НАПРЯЖЕНИЯ
- Γ) изменения фазы напряжения
- 5. Выходы триггера имеют название:
- А) ИНВЕРТИРУЮЩИЙ И НЕИНВЕРТИРУЮЩИЙ
- Б) положительный и отрицательный
- В) прямой и обратный
- Г) прямой и инвертный
- 6. КОЭФФИЦИЕНТ УСИЛЕНИЯ ТРАНЗИСТОРНОГО КАСКАДА ПО ТОКУ:

$$K_{I} = \beta \frac{I_{_{\rm GX}}}{I_{_{\rm BbIX}}} \; ; \; \text{B)} \; K_{I} = \beta \frac{I_{_{\rm BbIX}}}{I_{_{\rm GX}}} \; ; \; \text{B)} \; K_{\rm I} = U_{\rm BX} / U_{\rm BbIX} \; ; \; \Gamma) \; K_{\rm I} = I_{\rm BbIX} / I_{\rm BX}$$

- 7. Положительная обратная связь используется в...
- А) выпрямителях
- Б) ГЕНЕРАТОРАХ
- В) усилителях
- Г) СТАБИЛИЗАТОРАХ
- 8. Напряжение между входами операционного усилителя
- A) PABHO 0
- \mathbf{F}) РАВНО $\mathbf{U}_{\Pi \mathbf{U} \mathbf{T}}$
- В) больше 0
- Γ) Pabho U_{o.c.}
- 9. КОЭФФИЦИЕНТ УСИЛЕНИЯ ИНВЕРТИРУЮЩЕГО ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ОБРАТНОЙ СВЯЗЬЮ:
- A) $K = R_{OC}/R_{BX}$; B) $K = (R_{BX} + R_{OC})/R_{OC}$; B) $K = R_{BX}/R_{OC}$; Γ) $K = R_{BX}/(R_{BX} + R_{OC})$
- 10. ОТРИЦАТЕЛЬНАЯ ОБРАТНАЯ СВЯЗЬ В УСИЛИТЕЛЯХ ИСПОЛЬЗУЕТСЯ С ЦЕЛЬЮ...
- А) ПОВЫШЕНИЯ СТАБИЛЬНОСТИ УСИЛИТЕЛЯ
- Б) повышения коэффициента усилителя
- В) повышения размеров усилителя
- Г) СНИЖЕНИЯ НАПРЯЖЕНИЯ ПИТАНИЯ
- 11. ОСНОВНАЯ ХАРАКТЕРИСТИКА РЕЗИСТОРА:
- А) индуктивность L
- Б) сопротивление R
- В) ёмкость С
- Г) индукция В
- 12. Полупроводниковый диод имеет структуру...
- A) P-N-P; δ) N-P-N; B) P-N; Γ) P-N-P-N
- 13. ЭЛЕКТРОДЫ ПОЛУПРОВОДНИКОВОГО ДИОДА ИМЕЮТ НАЗВАНИЕ:
- А) КАТОД, УПРАВЛЯЮЩИЙ ЭЛЕКТРОД
- Б) база, эмиттер
- В) катод, анод
- Г) база 1, база 2
- 14. ЭЛЕКТРОДЫ ПОЛУПРОВОДНИКОВОГО ТРАНЗИСТОРА ИМЕЮТ НАЗВАНИЕ:

- А) КОЛЛЕКТОР, БАЗА, ЭМИТТЕР
- Б) АНОД, КАТОД, УПРАВЛЯЮЩИЙ ЭЛЕКТРОД
- В) сток, исток, затвор
- Γ) АНОД, СЕТКА, КАТОД
- 15. ТРИГГЕР ИМЕЕТ КОЛИЧЕСТВО ВЫХОДОВ:
- A) 2; δ) 1; B) 3; Γ) 4
- 16. Для стабилизации рабочей точки усилительного каскада используют:
- А) УВЕЛИЧЕНИЕ СОПРОТИВЛЕНИЯ НАГРУЗКИ
- В) повышение напряжения питания
- В) введение отрицательной обратной связи по постоянному току
- 17. ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ ИМЕЕТ:
- А) два выхода и два входа
- Б) ОДИН ВХОД И ДВА ВЫХОДА
- В) два входа и один выход
- Г) ОДИН ВХОД И ДВА ВЫХОДА
- 18. ЛОГИЧЕСКИЕ ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ ИСПОЛЬЗУЮТ ДЛЯ ПОСТРОЕНИЯ:
- А) ЦИФРОВЫХ УСТРОЙСТВ
- Б) УСИЛИТЕЛЕЙ НАПРЯЖЕНИЙ
- В) выпрямителей
- Γ) генераторов
- 19. БЛОКИНГ-ГЕНЕРАТОР ЭТО УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ:
- А) ПОСТОЯННОГО НАПРЯЖЕНИЯ
- Б) СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ
- В) линейно-изменяющегося напряжения
- Г) коротких импульсов
- 20. Р- N ПЕРЕХОД ОБРАЗУЕТСЯ ПРИ КОНТАКТЕ:
- А) металл-металл
- Б) полупроводник-полупроводник
- В) металл-полупроводник
- Г) металл-диэлектрик
- 21. При работе транзистора в ключевом режиме ток коллектора равен нулю:
- А) РЕЖИМ НАСЫЩЕНИЯ
- Б) РЕЖИМ ОТСЕЧКИ
- В) в активном режиме
- Г) РЕЖИМ А
- 22. НА ВЫХОДЕ ТРАНЗИСТОРНОГО МУЛЬТИВИБРАТОРА ФОРМИРУЮТСЯ:
- А) ПРЯМОУГОЛЬНЫЕ ИМПУЛЬСЫ
- Б) СИНУСОИДАЛЬНОЕ НАПРЯЖЕНИЕ
- В) треугольные импульсы
- Г) выпрямленное напряжение
- 23. РЕЛАКСАЦИОННЫМ НАЗЫВАЮТ ГЕНЕРАТОР ...
- А) ЭКСПОНЕНЦИАЛЬНЫХ ИМПУЛЬСОВ
- Б) СИНУСОИДАЛЬНОГО НАПРЯЖЕНИЯ
- В) постоянного напряжения
- Г) линейно изменяющегося напряжения
- 24. Амплитудно-частотной характеристикой усилителя называют зависимость...
- А) ВЫХОДНОЙ МОЩНОСТИ ОТ ЧАСТОТЫ ВХОДНОГО СИГНАЛА
- Б) входного сопротивления от частоты входного сигнала
- В) выходного сопротивления от частоты входного сигнала
- Г) КОЭФФИЦИЕНТА УСИЛЕНИЯ ОТ ЧАСТОТЫ ВХОДНОГО СИГНАЛА
- 25. Обозначение резистора 5К7 означает величину в ...
- A) 5700 om
- Б) 5 килоом 700 ом

- В) все ответы верные
- 26. К полупроводникам р-типа относится ...
- А) КРИСТАЛЛ ОБЛАДАЮЩИЙ ИЗБЫТКОМ КОНЦЕНТРАЦИИ ЭЛЕКТРОНОВ
- Б) ПОЛУПРОВОДНИК С ИЗБЫТКОМ КОНЦЕНТРАЦИИ ДЫРОК
- В) РЕКОМБИНИРОВАННЫЙ ПЕРЕХОД
- Г) КРИСТАЛЛИЧЕСКАЯ РЕШЕТКА С ИЗБЫТКОМ ЭЛЕКТРОНОВ
- 27. КАКОЙ ИЗ ДИОДОВ ИЗГОТАВЛИВАЮТ ИЗ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ С ВЫСОКОЙ КОН-ЦЕНТРАЦИЕЙ ПРИМЕСЕЙ?
- А) Фотодиод
- Б) Светодиод
- В) Туннельный диод
- Г) Варикап
- 30. КАКУЮ СТРУКТУРУ ИМЕЕТ ТРАНЗИСТОР?
- A) N-P-N;
- Б) N-Р-N-Р;
- B) N-P;
- Γ) P-N-P-N
- 31. КАКОЙ ВИД ТОКА НА ВЫХОДЕ ДИОДА, ЕСЛИ ОН ВКЛЮЧЕН В ЭЛЕКТРИЧЕСКУЮ ЦЕПЬ ПЕРЕМЕННОГО ТОКА?
- А) ПЕРЕМЕННЫЙ НЕПРЕРЫВНЫЙ
- Б) переменный пульсирующий
- В) постоянный
- Г) СИНУСОИДАЛЬНЫЙ
- 32. КАКУЮ СТРУКТУРУ ИМЕЕТ ТИРИСТОР?
- A) P-N-P-N
- Б) N-P-N
- B) N-N-P-P
- Γ) P-P-N-N
- 33. КАКУЮ ФУНКЦИЮ ВЫПОЛНЯЕТ СТАБИЛИТРОН В ИСТОЧНИКАХ ПИТАНИЯ?
- А) Стабилизация
- Б) Сглаживание
- В) Выпрямление
- Г) Понижение
- 34. Какой прибор обозначен ?
- А) Точечный диод
- Б) СВЧ-диод
- В) Выпрямительный диод
- Г) Биполярный транзистор р-n-р
- 35. Какой прибор обозначен
- А) МДП транзистор с индуцированным n-каналом
- Б) Фотодиод
- В) Фотоэлемент
- Г) Светодиод

Вопросы к экзамену

- 1. Электроника. Исторический обзор развития электроники. Классификация электронных приборов.
- 2. Строение и энергетические свойства кристаллов твердых тел.
- 3. Свойство чистых и примесных полупроводников р-п перехода.
- 4. Электронно-дырочный переход.
- 5. ВАХ р-п перехода, пробой и емкость р-п перехода.
- 6. Одно-тактовый (однополупериодный) выпрямитель.

- 7. Устройство и принцип действия полупроводниковых диодов.
- 8. Двух тактовый (двухполупериодный) выпрямитель.
- 9. Стабилитроны, импульсные и туннельные диоды, варикапы.
- 10. Типы, конструкция и система обозначения диодов.
- 11. Сглаживающие фильтры.
- 12. Биполярный транзистор.
- 13. Статические характеристики транзистора с общим эмиттером. Эквивалентные схемы транзистора.
- 14. Усилитель с общим эмиттером, коллектором, базой.
- 15. Транзисторный усилитель с общим эмиттером.
- 16. Транзисторный ключ.
- 17. Типы транзисторов и система обозначений.
- 18. Полевые транзисторы устройство и принцип действия.
- 19. Усилитель на полевом транзисторе.
- 20. МДП-транзисторы.
- 21. Тиристоры устройство и принцип действия.
- 22. Управляемые выпрямители.
- 23. Электронные лампы.
- 24. Электроннолучевые трубки устройство и принцип действия.
- 25. Фотодиоды, фототранзисторы и фототиристоры.
- 26. Светоизлучающие диоды устройство и принцип действия.
- 27. Типы светодиодов и их применение.
- 28. Интегральные микросхемы, классификация и виды.
- 29. Логические элементы.
- 30. Триггеры, счетчики импульсов, регистры, преобразователи кодов (шифраторы и дешифраторы).

Критерии оценки уровня освоения контролируемого материала

		Вид, форма	У	⁷ РОВЕНЬ ОСВОЕНИЯ КОНТ	РОЛИРУЕМОГО МАТЕРИАЛ.	A
Компетенции	Дескрипторы	ОЦЕНОЧНОГО	ОТЛИЧНО	ХОРОШО	УДОВЛЕТВОРИТЕЛЬНО	НЕУДОВЛЕТВОРИ-
		МЕРОПРИЯТИЯ				ТЕЛЬНО
ОПК-4	Знает:		заслуживает обу-	заслуживает обучаю-	заслуживает обучаю-	выставляется
	31-35		чающийся, обна-	щийся, обнаружив-	щийся, обнаруживший	обучающемуся,
	Умеет:	Экзамен Зачет	руживший все-	ший полное знание	знания основного	обна-ружившему
	У1-У2		стороннее, си-	учебного материала,	учебного материала в	пробелы в зна-
	Владеет навыками: Н1		стематическое и	усвоивший основную	объеме, необходимом	ниях основного
			глубокое знание	литературу, рекомен-	для дальнейшей учебы	учебного мате-
			учебного матери-	дованную в програм-	и предстоящей работы	риала. Оценка
			ала, предусмот-	ме. Оценка "хорошо"	по профессии, знако-	ставится обуча-
			ренного про-	выставляется обуча-	мых с основной лите-	ющимся, кото-
			граммой, усво-	ющимся, показавшим	ратурой, рекомендо-	рые не могут
			ивший основную	систематический ха-	ванной программой.	продолжить обу-
			литературу и зна-	рактер знаний по	Оценка выставляется	чение или при-
			комый с допол-	дисциплине и	обучающимся, допу-	ступить к про-
			нительной лите-	способным к их само-	стившим погрешности	фессиональной
			ратурой, реко-	стоятельному попол-	в ответе на экзамене и	деятельности по
			мендованной	нению и обновлению	при выполнении экза-	окончании обра-
			программой.	в ходе дальнейшей	менационных заданий,	зовательного
				учебной работы и	но обладающим необ-	учреждения без
				профессиональной	ходимыми знаниями	дополнительных
				деятельности.	для их устранения под	занятий по рас-
					руководством препода-	сматриваемой
					вателя.	дисциплине.
	31-34	Контроль-	Более 85% пра-	60-75% правильных	50-60% ПРАВИЛЬНЫХ	Менее 50% пра-
	У1 – У6	НАЯ РАБОТА	вильных отве-	ОТВЕТОВ	ОТВЕТОВ	ВИЛЬНЫХ ОТВЕТОВ
	H1 – H3		TOB.			

31-34	Итоговый	За каждый пра-	За каждый правиль-	ЗА КАЖДЫЙ ПРАВИЛЬ-	За каждый пра-
У1 – У6	TECT	вильный ответ –	НЫЙ ОТВЕТ — 1 БАЛЛ.	ный ответ – 1 балл.	ВИЛЬНЫЙ ОТВЕТ —
H1 – H3		1 БАЛЛ. СУММАР-	Суммарное количе-	Суммарное количе-	1 БАЛЛ. СУММАР-
		ное количество	СТВО БАЛЛОВ - В ПРЕ-	СТВО БАЛЛОВ- ОТ 50%	НОЕ КОЛИЧЕСТВО
		БАЛЛОВ>= 85%	делах от 70% до 85%	до 70% общего коли-	БАЛЛОВ - МЕНЕЕ
		общего количе-	ОБЩЕГО КОЛИЧЕСТВА	ЧЕСТВА ВОПРОСОВ	50% общего ко-
		СТВА ВОПРОСОВ	ВОПРОСОВ		ЛИЧЕСТВА ВОПРО-
					COB

Составитель	/ А.Б. ФЕДОРОВ
	(ПОДПИСЬ)
«»	20 г.