МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Теоретическая механика

направление подготовки: <u>15.03.05 – Конструкторско-технологическое</u> <u>обеспечение машиностроительных производств</u>

направленность (профиль): **Технологии цифрового проектирования и производства в машиностроении**

уровень образования: бакалавриат

форма обучения: заочная

общая трудоемкость дисциплины составляет: 6 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Иванов Ю.В., к.ф.-м.н., доцент

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технологии цифрового проектирования и производства в машиностроении».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

Руководитель образовательной программы

.Г. Горбушин

А.В. Овсянников

20.05.2025 г.

Аннотация к дисциплине

Название дисциплины	Теоретическая механика					
Направление (специальность) подготовки	15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»					
Направленность (профиль/программа/специ ализация)	Технологии цифрового проектирования и производства в машиностроении					
Место дисциплины	Обязательная часть Блока 1 «Дисциплины (модули)» ОПОП.					
Трудоемкость (з.е. / часы)	6 з.е. / 216 часов					
Цель изучения дисциплины	Цель освоения дисциплины является изучение общих законов в области механики движения и взаимодействия тел, а так же создание основы для изучения общеинженерных и специальных дисциплин					
Компетенции, формируемые в результате освоения дисциплины	ОПК-5. Способен использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда					
Содержание дисциплины (основные разделы и темы)	ание дисциплины Статика					
Форма промежуточной аттестации	Зачет, экзамен					

1. Цели и задачи дисциплины:

Цель освоения дисциплины является изучение общих законов в области механики движения и взаимодействия тел, а так же создание основы для изучения общеинженерных и специальных лисциплин

Задачи дисциплины:

- формирование представлений о роли и месте механики в науке и технике, при практическом применении положений этой дисциплины в сфере профессиональной деятельности;
- изучение основных понятий и законов механики;
- обучение основам практического использования методов математического моделирования в представлении равновесия и движения материальных тел и механических систем;
- формирование практических навыков реализации алгоритмов решения типовых задач, а также навыков по применению общих положений теоретической механики при научном анализе ситуаций, с которыми инженеру приходится сталкиваться в ходе создания новой техники и новых технологий.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п 3	Знания					
1.	основные понятия и концепции теоретической механики, важнейшие теоремы механики и их следствия, порядок применения теоретического аппарата механики в важнейшие практические приложения					
2.	основные механические величины, их определения, смысл и значения для теоретической механики					
3.	основные модели механических явлений, идеологии моделирования технических систем и принципов построения математических моделей механических систем					
4.	основные методы исследования равновесия и движения механических систем, важнейших (типовых) алгоритмов такого исследования					

Умения, приобретаемые в ходе освоения дисциплины

№ п/п У	Умения
1.	интерпретировать механические явления при помощи соответствующего теоретического аппарата
2.	пользоваться определениями механических величин и понятий для правильного истолкования их смысла
3.	объяснять характер поведения механических систем с применением важнейших теорем механики и их следствий
4.	записывать уравнения, описывающие поведение механических систем, учитывая размерности механических величин и их математическую природу (скаляры, векторы)
5.	применять основные методы исследования равновесия и движения механических систем, а также типовые алгоритмы такого исследования при решении конкретных задач
6.	пользоваться при аналитическом и численном исследованиях математико-механических моделей технических систем возможностями современных компьютеров и информационных технологий

Навыки, приобретаемые в ходе освоения дисциплины

HADDIKH	, приобретаемые в ходе освоения дисциплины							
№ П/П	Навыки							
	применение основных законов теоретической механики в важнейших практических приложениях							
2.	применение основных методов исследования равновесия и движения механических							

	систем для решения естественнонаучных и технических задач
3.	построение и исследование математических и механических моделей технических систем
4.	применение типовых алгоритмов исследования равновесия и движения механических
	систем

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-5. Способен	ОПК-5.1 Знать: законы естественных	1, 2, 3, 4	-	-
использовать	наук, основные закономерности,			
основные	действующие в процессе			
закономерности,	конструирования и проектирования,			
действующие в	технологии изготовления			
процессе	машиностроительных изделий, их			
изготовления	влияние на качественные показатели и			
машиностроительных	производственные затраты			
изделий требуемого	ОПК-5.2 Уметь: применять	-	1, 2, 3, 4,	-
качества, заданного	естественнонаучные знания для		5, 6	
количества при	конструирования, проектных расчетов,			
наименьших затратах	технологии изготовления изделий			
общественного труда	машиностроения, определения			
	производственных затрат			
	ОПК-5.3 Владеть: навыками	-	-	1, 2, 3, 4
	конструирования, проектных расчетов,			
	проектирования технологии			
	изготовления изделий машиностроения,			
	определения производственных затрат			

3. Место дисциплины в структуре ООП:

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)». Дисциплина изучается на 1 и 2 курсе в 2 и 3 семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Математика, Физика, Информатика, Информационные технологии и программирование.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): Основы проектной деятельности, Сопротивление материалов, Гидравлика, Теория механизмов и машин, Детали машин и мехатронных модулей, Основы технологии машиностроения, Математическое моделирование в машиностроении, Системы автоматизации инженерных расчетов, Методы компьютерного конструирования.

4. Структура и содержание дисциплины

4.1. Структура дисциплины

Раздел дисциплины.		0 8	пр					и раздела	
N₂	Форма промежуточной аттестации (по			(в часах) по видам учебной работы					Содержание
п/п	аттестации (по	Ber 4a	Семестр			актная		CPC	самостоятельной работы
	семестрам)			ЛК	пр	лаб	КЧА		
1	2	3	4	5	6	7	8	9	10
1.	Статика	53	2	4	4	-	-	45	подготовка
									самостоятельной
									письменной работы,
									решение
									разноуровневых задач и
									заданий
2.	Кинематика	53	2	4	4	_	-	45	подготовка
									самостоятельной
									письменной работы,
									решение
									разноуровневых задач и
									заданий
3.	Зачет	2	2	_	_	_	0,3	1,7	Зачет выставляется по
								,.	совокупности
									результатов текущего
									контроля успеваемости
									или проводиться в
									устной форме
	Всего за 2 семестр	108		8	8	0	0,3	91,7	J
4.	Динамика	99	3	4	4	_	-	91	подготовка
									самостоятельной
									письменной работы,
									решение
									разноуровневых задач и
									заданий
5.	Экзамен	9	3	-	-	_	0,4	8,6	Оценка по экзамену
								,	выставляется по
									совокупности
									результатов текущего
									контроля успеваемости
									или проводиться в
									письменной форме
	Всего за 3 семестр	108		4	4	0	0,4	99,6	T - F
l									

4.2. Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма текущего контроля
1	Статика	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-4	Самостоятельная письменная работа №1, 2 Разноуровневые задачи и задания
2	Кинематика	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-4	Самостоятельная письменная работа №3-5 Разноуровневые задачи и задания
3	Динамика	ОПК-5.1, 5.2, 5.3	1-4	1-6	1-4	Самостоятельная письменная работа №6-10 Разноуровневые задачи и задания

4.3. Наименование тем лекций, их содержание и объем в часах

№ п/п	№ раздела	Наименование лекций	Трудоемкость
11/11	дисциплины	2 семестр	(час)
	1	Статика	
	1.1	Предмет механики. Теоретическая механика как научная база областей современной техники. Предмет статики. Аксиомы статики. Скалярные и векторные величины в теоретической механике. Связи и реакции связей.	0,25
	1.2	Принцип освобождаемости от связей. Задачи статики. Проекция силы на ось и плоскость. Момент силы относительно точки и оси. Пара сил. Момент пары сил. Теорема о сумме сил пары относительно произвольной точки (центра). Элементарные операции, выполняемые над парами.	1
	1.3	Сложение двух сил, приложенных к одной точке тела под углом друг к другу. Главный вектор системы сил, проекции на оси координат. Величина и направление этого вектора. Главный момент системы сил относительно точки (центра). Величина и направление этого вектора. Понятие о приведении системы сил к простейшему виду (к равнодействующей силе, паре сил и силовому винту).	1
	1.4	Условия равновесия произвольной пространственной системы, пространственной системы сходящихся сил. Условия равновесия произвольной плоской системы сил, плоской системы параллельных сил, плоской системы сходящихся сил.	1
	1.5	Трение скольжения. Законы Кулона. Трение качения.	0,25
	1.6	Центр тяжести тела. Центр тяжести объема, плоскости (пластинки), линии. Способы определения центров тяжести тел.	0,5
\sqcup	2	Кинематика	
	2.1	Предмет кинематики. Пространство и время в кинематике. Система отсчета. Задачи кинематики. Способы задания движения точки. Вектор скорости точки. Вектор ускорения точки. Определение скорости и ускорения точки при координатном способе задания ее движения, при естественном способе задания ее движения; касательное и нормальное ускорение точки. Равномерное и равнопеременное движения точки.	1
	2.2	Поступательное движение тела. Теорема о траекториях, скоростях и ускорениях точек тела при поступательном движении. Вращательное движение тела, уравнение этого движения. Угловая скорость и угловое ускорение тела. Определение скоростей и ускорений точек вращающегося тела. Равномерное и равнопеременное вращение.	1
	2.3	Плоскопараллельное движение тела, уравнение этого движения. Разложение плоскопараллельного движения на поступательное и вращательное. Теорема скоростей. Мгновенный центр скоростей и определение его положения. Определение скоростей точек тела с помощью мгновенного центра скоростей. Определение ускорений точек тела при плоскопараллельном движении.	1
	2.4	Составные части сложного движения точки. Теорема о сложении скоростей и о сложении ускорений. Ускорение Кориолиса.	1
	Всего 2 семестр		8

	3 семестр	
3	Динамика	
3.1	Предмет динамики. Основные понятия и определения динамики. Законы Галилея-Ньютона. Прямая и обратная задачи динамики материальной точки. Составление дифференциальных уравнений движения в инерциальной системе отсчета.	0,5
3.2	Силы инерции при движении материальной точки относительно инерциальной системы отсчета. Составление дифференциальных уравнений относительного движения материальной точки.	0,5
3.3	Механическая система. Внешние и внутренние силы. Свойства внутренних сил. Центр масс. Моменты инерции механической системы и твердого тела относительно плоскости, оси и полюса. Радиус инерции. Теорема Штейнера-Гюйгенса. Примеры вычисления моментов инерции тел простейшей формы.	0,5
3.4	Нахождение количества движения точки и системы. Определение момента количества движения механической системы относительно неподвижной оси, точки и центра масс. Применение теорем об изменении количества движения, момента количества движения, и о движении центра масс для составления дифференциальных уравнений движения и анализа движения системы. Дифференциальные уравнения поступательного, плоско-параллельного и вращательного движения твердого тела.	0,5
3.5	Элементарная работа силы. Работа силы на конечном перемещении. Мощность. Работа силы тяжести и силы упругости. Работа внутренних сил. Работа сил, приложенных к твердому телу, движущемуся поступательно. Работа сил, приложенных к твердому телу, вращающемуся вокруг неподвижной оси.	0,5
3.6	Кинетическая энергия системы в общем случае ее движения. Кинетическая энергия твердого тела в случаях его поступательного движения, вращения вокруг неподвижной оси и плоского движения. Теоремы об изменении кинетической энергии точки и системы.	0,5
3.7	Принцип Даламбера для точки и механической системы. Частные случаи приведения сил инерции твердого тела к простейшему виду. Статическая, моментная и динамическая неуравновешенности вращающихся тел, способы их ликвидации.	0,5
3.8	Связи и их уравнения. Классификация связей: односторонние, двусторонние, стационарные, нестационарные, голономные, неголономные. Число степеней свободы системы. Элементарная работа силы на возможном перемещении. Идеальные связи. Принцип возможных перемещений. Общее уравнение динамики.	0,5
Всего 3 семестр		4
Итого		12

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических занятий	Трудоем- кость (час)
		2 семестр	
1	1	Определение проекции силы на ось и на плоскость. Нахождение момента силы относительно точки и оси.	1
2	1	Определение реакций связей тел.	1
3	1	Определение реакций опор пространственной конструкции и сил, действующих на нее.	3
4	2	Определение кинематических характеристик и траектории точки, радиуса кривизны траектории.	1
5	2	Определение скоростей и ускорений точек твердого тела при его плоскопараллельном движении, нахождение угловых скорости и ускорения этого тела.	1
6	2	Определение абсолютных скорости и ускорения точки при ее сложном движении.	1
	Всего 2 семестр		8
7	3	Составление дифференциальных уравнений с помощью законов Ньютона. Решение этих уравнений.	0,5
8	3	Составление дифференциальных уравнений движения относительно неинерциальных систем отсчета. Решение этих уравнений.	0,5
9	3	Определение моментов инерции тел относительно (a) осей, проходящих через центр масс, и (б) параллельных осей.	0,5
10	3	Составление и интегрирование дифференциальных уравнений плоскопараллельного и вращательного движения твердого тела.	0,5
11	3	Изучение движения механической системы с помощью теоремы об изменении ее кинетической энергии.	0,5
12	3	Определение реакций связей механической системы, находящейся в движении, с помощью принципа Даламбера.	0,5
13	3	Определение активных сил, действующих на механическую систему и реакций ее связей с помощью принципа возможных перемещений.	0,5
14	3	Определение кинематических характеристик тел механической системы, активных сил, действующих на нее, и реакций связей с помощью общего уравнения динамики.	0,5
	Всего 3 семестр		4
	Итого		12

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

Лабораторные работы учебным планом не предусмотрены

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся:

- самостоятельная письменная работа:
- 1. Самостоятельная работа С.З. Определение реакций опор составной конструкции (система двух тел)
- 2. Самостоятельная работа С.8. Определение положения центра тяжести тела
- 3. Самостоятельная работа К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения

- 4. Самостоятельная работа К.3. Кинематический анализ плоского механизма
- 5. Самостоятельная работа К.7. Определение абсолютной скорости и абсолютного ускорения точки
- 6. Самостоятельная работа Д.1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
- 7. Самостоятельная работа Д.4. Исследование относительного движения материальной точки
- 8. Самостоятельная работа Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
- 9. Самостоятельная работа Д.15. Применение принципа возможных перемещений в определению реакций опор составной конструкции
- 10. Самостоятельная работа Д.19. Применение общего уравнения динамики к исследованию движения механической системы с одной степенью свободы

Примечание: Оценочные средства (типовые варианты защит лабораторных работ) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет – 2 семестр; экзамен – 3 семестр.

6. Учебно-методическое и информационное обеспечение

дисциплины: а) Основная литература

№ п/п	Наименование книги			
1	Тарг С.М. Краткий курс теоретической механики [Текст]:			
	учебник для втузов /Тарг С.М 17-е изд., стер М. :			
	Высш. шк., 2007 416 с. Экземпляры всего - 61			
2	Мещерский И.В. Задачи по теоретической механике	2006		
	[Текст]: учебное пособие для вузов /И.В. Мещерский; под			
	ред.: В. А. Пальмова, Д. Р. Меркина Изд. 46-е, стер			
	Санкт-Петербург; Москва; Краснодар: Лань, 2006 447 с.			
	Экземпляры всего - 148			

б) Дополнительная литература

№	Наименование книги	
п/п	таименование книги	издания
1	Сборник заданий для курсовых работ по теоретической	2008
	механике [Text]: учеб. пособие для втузов /[А.А. Яблонский	
	и др.]; под общ. ред. А. А. Яблонского Изд. 16-е, стер	
	М.: Интеграл-Пресс, 2008 382 с.	
	Экземпляры всего - 104	

в) перечень ресурсов информационно-коммуникационной сети Интернет

1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks

2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi- bin/irbis64r 12/cgiirbis 64.exe?

LNG=&C21COM=F&I21DBN=IBIS&P21DBN=IBIS

- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp

г) программное обеспечение:

- 1. Doctor Web Enterprise Suite, Лицензия № 116663324
- 2. Microsoft Office Standard 2007, Open License: 42267924

3. OpenOffice, LibreOffice - свободно распространяемые офисные пакеты

д) методические указания

1. Каледина И.В., Крылов Э.Г., Юртиков Р.А. Задания для расчетно-графических работ по теоретической механике. Раздел «Статика»: Методические указания. – Ижевск: Изд-во ИжГТУ, 2009. – 61 с.

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия.

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, ноутбук)).

2. Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психологомедико-педагогической комиссии (ПМПК).

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства

по дисциплине «Теоретическая механика»

(наименование – полностью)

направление (специальность) «Конструкторско-технологическое обеспечение

машиностроительных производств»

(шифр, наименование – полностью)

направленность (профиль/программа/специализация) «Технологии цифрового проектирования и производства в машиностроении» (наименование – полностью)

уровень образования: бакалавриат

форма обучения: Заочная

общая трудоемкость дисциплины составляет: 6 зачетных единиц

1. Оценочные средства

Оценивание формирование компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций представлены ниже.

№	Коды компетенции и	Результат обучения	Формы текущего и
п/п	индикаторов	(знания, умения и навыки)	промежуточного контроля
1	ОПК-5.1 Знать: законы	31: основные понятия и концепции	Самостоятельная письменная
1	естественных наук,	теоретической механики, важнейшие теоремы	работа №1-10
	основные	механики и их следствия, порядок применения	Разноуровнеые задачи и задания
	закономерности,	теоретического аппарата механики в важнейшие	Зачет
	действующие	практические приложения;	Экзамен
	в процессе	32: основные механические величины, их	ORSamen
	конструирования и	определения, смысл и значения для	
	проектирования,	теоретической механики;	
	технологии	33: основные модели механических явлений,	
	изготовления	идеологии моделирования технических систем	
	машиностроительных	и принципов построения математических	
	изделий, их влияние на	моделей механических систем;	
	качественные	34: основные методы исследования равновесия	
	показатели	и движения механических систем, важнейших	
	и производственные	(типовых) алгоритмов такого исследования.	
	затраты	(Imassin) will opinimos funcio newlegosulini.	
2	ОПК-5.2 Уметь:	У1: интерпретировать механические явления	Самостоятельная письменная
	применять	при помощи соответствующего теоретического	работа №1-10
	естественнонаучные	аппарата;	Разноуровнеые задачи и задания
	знания для	У2: пользоваться определениями механических	Зачет
	конструирования,	величин и понятий для правильного	Экзамен
	проектных расчетов,	истолкования их смысла;	
	технологии	У3: объяснять характер поведения	
	изготовления изделий	механических систем с применением	
	машиностроения,	важнейших теорем механики и их следствий;	
	определения	У4: записывать уравнения, описывающие	
	производственных	поведение механических систем, учитывая	
	затрат	размерности механических величин и их	
	1	математическую природу (скаляры, векторы);	
		У5: применять основные методы исследования	
		равновесия и движения механических систем, а	
		также типовые алгоритмы такого исследования	
		при решении конкретных задач;	
		У6: пользоваться при аналитическом и	
		численном исследованиях математико-	
		механических моделей технических систем	
		возможностями современных компьютеров и	
		информационных технологий.	
3	ОПК-5.3 Владеть:	Н1: применение основных законов	Самостоятельная письменная
	навыками	теоретической механики в важнейших	работа №1-10
	конструирования,	практических приложениях;	Разноуровнеые задачи и задания
	проектных расчетов,	Н2: применение основных методов	Зачет
	проектирования	исследования равновесия и движения	Экзамен
	технологии	механических систем для решения	
	изготовления изделий	естественнонаучных и технических задач;	
	машиностроения,	Н3: построение и исследование математических	
	определения	и механических моделей технических систем;	
	производственных	Н4: применение типовых алгоритмов	
	затрат	исследования равновесия и движения	
		механических систем.	

Описание элементов для оценивания формирования компетенций

Наименование: зачет во 2-м семестре Представление в ФОС: перечень вопросов Перечень вопросов для проведения зачета:

- 1. Основные понятия и аксиомы механики. Материальная точка, абсолютно твердое тело. Сила, система сил, эквивалентные системы сил. Равнодействующая сила. Аксиомы статики.
- 2. Связи и реакции связей. Реакции связей основных типов.
- 3. Система сходящихся сил. Способы сложения двух сил. Разложение силы на две составляющие. Определение равнодействующей системы сил геометрическим способом. Силовой многоугольник. Условие равновесия в векторной форме. Аналитическое определение равнодействующей. Условие равновесия в аналитической форме.
- 4. Момент силы относительно точки.
- 5. Теорема Вариньона о моменте равнодействующей.
- 6. Пара сил и её характеристики. Момент пары. Эквивалентные пары. Сложение пар. Условие равновесия системы пар сил.
- 7. Плоская система произвольно расположенных сил. Приведение силы к данной точке (метод Пуансо). Приведение плоской системы сил к центру (теорема Пуансо). Главный вектор и главный момент системы сил.
- 8. Равновесие плоской систем сил. Уравнения равновесия и их различные формы.
- 9. Равновесие с учетом трения.
- 10. Пространственная система сил. Проекция силы на ось, не лежащую с ней в одной плоскости (метод двойного проецирования).
- 11. Момент силы как вектор. Момент силы относительно оси. Связь момента силы относительно начала и осей координат.
- 12. Пространственная система произвольно расположенных сил, ее равновесие.
- 13. Центр тяжести тела. Центр тяжести простых и составных геометрических фигур.
- 14. Основные понятия кинематики. Задачи кинематики. Способы задания движения.
- 15. Скорость точки при векторном, координатном и естественном способе задания движения.
- 16. Ускорение точки при векторном, координатном и естественном способе задания движения.
- 17. Анализ движения точки по ее нормальному и касательному ускорению.
- 18. Частные случаи движения точки.
- 19. Простейшие движения твердого тела. Поступательное движение.
- 20. Вращательное движение твердого тела вокруг неподвижной оси. Основные характеристики вращательного движения.
- 21. Скорости и ускорения точек вращающегося тела.
- 22. Векторы угловой скорости и ускорения.
- 23. Плоскопараллельное движение твердого тела. Разложение плоскопараллельного движения на поступательное и вращательное.
- 24. Определение скорости любой точки тела в плоскопараллельном движении. Основная теорема кинематики. Мгновенный центр скоростей. Угловая скорость тела.
- 25. Определение ускорения любой точки тела в плоскопараллельном движении.
- 26. Сложное движение точки. Абсолютная скорость, абсолютное ускорение.

Пример билета на зачет

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» **Билет к зачету №**___ по дисциплине «Теоретическая механика»

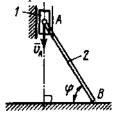
		по дисциі	плине «теој	рстичес	лая мсла	ника»		
Вопрос	Вращательное		•	тела	вокруг	неподвижной	оси.	Основные
	истики вращател			. F = 1	5 II E -	20 11	AD = 0	C = DC = 2
M, $CD = 0$	Определить реак 0,4 м.	цию опоры 1	Э если силы	$IF_I = I$	$JH, F_2 =$	20 <i>п</i> , размеры <i>А</i>	AB = 0,	0 M, BC = 2
A F.	45°60 F2 D							
Билет рас Протокол Зав. Кафе		жден на засе	едании кафе	едры		_«»		20r.
Критери	и оценки:							

Приведены в разделе 2

Наименование: экзамен в 3-м семестре **Представление в ФОС:** перечень вопросов

Перечень вопросов для проведения экзамена:

- 1. Законы механики Галилея-Ньютона.
- 2. Дифференциальные уравнения движения точки в инерциальной системе отсчета. Две основные задачи динамики.
- 3. Дифференциальные уравнения движения точки в неинерциальной системе отсчета. Принцип относительности классической механики.
- 4. Механическая система и ее центр масс.
- 5. Моменты инерции твердого тела относительно плоскости, оси и полюса. Радиус инерции.
- 6. Теорема Штейнера-Гюйгенса.
- 7. Вычисление моментов инерции некоторых однородных тел относительно осей, проходящих через центр масс.
- 8. Эллипсоид инерции. Главные оси инерции. Свойства главных осей и главных центральных осей инерции.
- 9. Вычисление моментов инерции твердого тела относительно произвольных осей, проходящих через центр масс. Вычисление центробежных моментов инерции твердого тела.
- 10. Элементарная работа силы и работа силы на конечном перемещении.
- 11. Работа силы тяжести и силы упругости.
- 12. Работа внутренних сил твердого тела.
- 13. Работа сил, приложенных к твердым телам, движущимся поступательно и вращающимся вокруг неподвижной оси.
- 14. Работа силы в потенциальном силовом поле. Силовая функция и потенциальная энергия.
- 15. Теорема о движении центра масс.
- 16. Теоремы об изменении количества движения точки и системы.
- 17. Теоремы об изменении кинетического момента точки и системы.
- 18. Кинетический момент тела, вращающегося вокруг неподвижной оси.
- 19. Теорема об изменении кинетического момента системы в её относительном движении по отношению к центру масс. Дифференциальное уравнение вращательного и плоского движения твердого тела.
- 20. Кинетическая энергия системы в общем случае её движения.
- 21. Кинетическая энергия твердого тела в случаях его поступательного, вращательного и плоского движений.
- 22. Теоремы об изменении кинетической энергии точки и системы.
- 23. Принцип Даламбера для точки и системы материальных точек.
- 24. Главных вектор и главный момент сил инерции. Частные случаи приведения сил инерции твердого тела.
- 25. Реакции опор твердого тела, вращающегося вокруг неподвижной оси.
- 26. Связи и их уравнения.
- 27. Возможные перемещения точек системы. Число степеней свободы.
- 28. Элементарная работа силы на возможном перемещении. Идеальные связи.
- 29. Принцип возможных перемещений.
- 30. Общее уравнение динамики.


Пример билета на экзамен

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» **Билет к экзамену №**___

по дисциплине «Теоретическая механика»

- 1. Теорема о движении центра масс.
- 2. Связи и их уравнения.

Задача: Ползун 1 массой 1 κz соединен шарниром с однородным стержнем 2 длиной AB=1 m и массой 3 κz . Конец B стержня скользит по горизонтальной плоскости. Определить кинетическую энергию системы тел, когда скорость $v_A=2$ m/c и угол $\varphi=60^\circ$.

Билет рассмотрен и утвержден на заседании кафедры	 « <u></u>	<u></u> »		20	г.
Протокол №					
Зав. кафедрой			_/		

Критерии оценки:

Приведены в разделе 2

Наименование: самостоятельная письменная работа

Представление в ФОС: перечень заданий

Варианты заданий:

- 1. Самостоятельная работа С.3. Определение реакций опор составной конструкции (система двух тел)
- 2. Самостоятельная работа С.8. Определение положения центра тяжести тела
- 3. Самостоятельная работа К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения
- 4. Самостоятельная работа К.3. Кинематический анализ плоского механизма
- 5. Самостоятельная работа К.7. Определение абсолютной скорости и абсолютного ускорения точки
- 6. Самостоятельная работа Д.1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
- 7. Самостоятельная работа Д.4. Исследование относительного движения материальной точки
- 8. Самостоятельная работа Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
- 9. Самостоятельная работа Д.15. Применение принципа возможных перемещений к определению реакций опор составной конструкции
- 10. Самостоятельная работа Д.19. Применение общего уравнения динамики к исследованию движения механической системы с одной степенью свободы

Примеры заданий

Самостоятельная работа С.З. Определение реакций опор составной конструкции (система двух тел)

Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения C.

Дано: схема конструкции (рис. 20); $P_1 = 5 \ \kappa H$, $P_2 = 7 \ \kappa H$; $M = 22 \ \kappa H$ • M; $q = 2 \ \kappa H/M$; $\alpha = 60^\circ$. Определить реакции опор, а также соединения C для того способа сочленения (шарнир или скользящая заделка), при котором модуль опоры A наименьший.

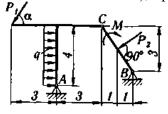
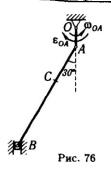


Рис. 20


Самостоятельная работа К.З. Кинематический анализ плоского механизма

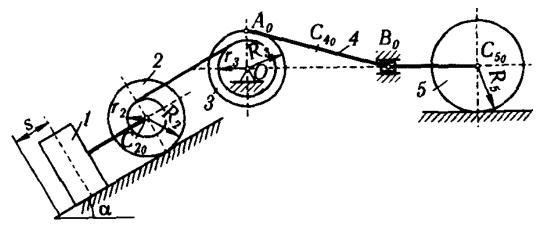
Найти для заданного положения механизма скорости и ускорения точек B и C, а также угловую скорость и угловое ускорение звена, которому эти точки принадлежат.

Дано: схема механизма в заданном положении (рис. 76); исходные данные (табл. 26).

Таблица 26

	Размеры, см			
OA	AB	AC	ω_{OA} , рад/с	$arepsilon_{OA}$, рад/с 2
10	60	20	1,5	2

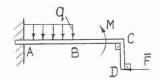
Самостоятельная работа Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы


Механическая система под действием сил тяжести приходит в движение из состояния покоя; начальное положение системы показано на рисунке. Учитывая трение скольжения тела и сопротивление качению тела катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела I в тот момент, когда пройденный им путь станет равным S.

Необходимые для решения данные приведены в таблице. Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.

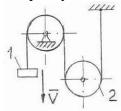
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.

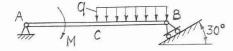
Дано: m_1 - масса груза 1, $m_2 = 2m_1$, $m_3 = m_1$, $m_4 = 0.5m_1$, $m_5 = 20m_1$, $R_2 = R_3 = 12$ см, $r_2 = 0.5R_2$, $r_3 = 0.75R_3$, $R_3 = 20$ см, $AB = l = 4R_3$, $i_{2\xi} = 8$ см, $i_{3x} = 10$ см, $\alpha = 30^\circ$, f = 0.1, $\delta = 0.2$ см, $s = 0.06\pi$ м. Сопротивление качению тела 2 не учитывать. Шатун 4 считать тонким однородным стержнем; каток 5 - однородный сплошной цилиндр. Массами звена BC, 5 и ползуна B пренебречь. На рисунке показана механическая система в начальном положении.


Найти V1 - скорость груза 1 в конечном положении.

Критерии оценки: Приведены в разделе 2

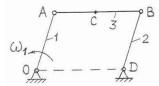
Наименование: разноуровненые задачи и задания Представление в ФОС: набор вариантов заданий


Варианты задач:

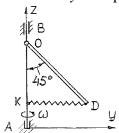

Задача 2. В каких случаях момент силы относительно оси равен нулю?

Задача 3. Как определить нормальное, касательное и полное ускорения точки твердого тела, вращающегося вокруг неподвижной оси, если известны угловая скорость ω и угловое ускорение ε тела, а также расстояние R от оси его вращения до точки.

Задача 4. Скорость груза $1\ V = 0.5\ \text{м/c}$. Определить угловую скорость подвижного блока 2, если его радиус $R = 0.1\ \text{м}$.



Задача 5. На балку AB действует пара сил с моментом M = 4 H • м и распределенная нагрузка интенсивностью q = 2 H/м. Определить реакции опоры A, если AB = 4 M, CB = 2 M.


Задача 6. Изменится ли алгебраический момент силы относительно данной точки при перемещении точки приложения силы вдоль линии ее действия.

Задача 7. На двух кривошипах I и 2 одинаковой длины OA = BD = 0,2 M закреплен стержень 3. Определить скорость точки C стержня 3, если $\omega_I = I$ pad/c и AB = OD.

Задача 8. Запишите векторную формулу для определения абсолютного ускорения точки при ее сложном движении (формулу, выражающую теорему Кориолиса).

Задача 9. Найти реакции внешних связей механической системы, если $m_1 = 30 \ \kappa z$, $OD = OA = 0.4 \ m$, $OB = 0.08 \ m$, $\omega = 12 \ pad/c = const$. Массой вала 2 и пружины KD пренебречь. На схеме плоскость vAz вертикальна.

Критерии оценки:

Приведены в разделе 2

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы		Количество баллов		
дисциплины	Форма контроля	min	max	
1	Самостоятельная письменная работа №1	3	5	
1	Самостоятельная письменная работа №2	3	5	
1	Разноуровненвые задачи и задания	3	5	
2	Самостоятельная письменная работа №3	3	5	
2	Самостоятельная письменная работа №4	3	5	
2	Самостоятельная письменная работа №5	3	5	
2	Разноуровненвые задачи и задания	3	5	
	Итого во 2 семестре	21	35	
3	3 Самостоятельная письменная работа №6		5	
3	Самостоятельная письменная работа №7		5	
3	Самостоятельная письменная работа №8	3	5	
3	Самостоятельная письменная работа №9	3	5	
3	Самостоятельная письменная работа №10	3	5	
3	Разноуровненвые задачи и задания	3	5	
	Итого в 3 семестре	18	30	
	Всего	39	65	

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов
Самостоятельная письменная работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий.
Разноуровненвые задачи и задания	Даны правильные ответы не менее чем на 50% заданных вопросов. Продемонстрированы знания основного учебно-программного материала

Промежуточная аттестация по дисциплине проводится во 2 семестре в форме зачета, в 3 семестре в форме экзамена.

Итоговая оценка по дисциплине во 2 семестре может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	21-35
«не зачтено»	Менее 21

Если сумма набранных баллов менее 21 — обучающийся не допускается до промежуточной аттестации, при условии что выполнены самостоятельные письменные работы (N21-5).

Если сумма баллов составляет от 21 до 35 баллов, обучающийся допускается до зачета.

Билет к зачету включает 1 теоретический вопрос и 1 практическое задание.

Промежуточная аттестация проводится в форме устного опроса.

Время на подготовку: 25-30 минут.

Итоговая оценка по дисциплине в 3 семестре может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«ОТЛИЧНО»	27-30
«хорошо»	22-26
«удовлетворительно»	18-21
«неудовлетворительно»	0-17

Если сумма набранных баллов менее 18 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов более или равно 18, обучающийся допускается до экзамена, при условии что выполнены самостоятельные письменные работы (№6-10).

По сумме набранных баллов студенту может быть выставлена оценка за промежуточную аттестацию, согласно приведенной шкале. Обучающийся имеет право сдать экзамен в устной форме для изменения балла.

Билет к зачету включает 2 теоретических вопроса и 1 практическое задание. Время на подготовку: 25-30 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки

Критерии оценки Оценка Обучающийся показал всестороннее, систематическое и глубокое знание учебного материала, предусмотренного программой, умение уверенно применять на их практике при выполнении заданий, способность полно, «отлично» правильно и аргументированно отвечать на вопросы и делать необходимые выводы. Свободно использует основную литературу и знаком с дополнительной литературой, рекомендованной программой Обучающийся показал полное знание теоретического материала, владение основной литературой, рекомендованной в программе, умение самостоятельно выполнять задания, способность аргументированно отвечать на вопросы и делать необходимые выводы, допускает «хорошо» единичные ошибки, исправляемые после замечания преподавателя. Способен к самостоятельному пополнению и обновлению знаний в ходе дальнейшей учебной работы и профессиональной деятельности Обучающийся демонстрирует неполное или фрагментарное знание основного учебного материала, допускает существенные ошибки в его изложении, испытывает затруднения и допускает ошибки при «удовлетворительно» выполнении заданий, выполняет задание при подсказке преподавателя, затрудняется в формулировке выводов. Владеет знанием основных разделов, необходимых для дальнейшего обучения, знаком с основной и дополнительной литературой, рекомендованной программой Обучающийся при ответе демонстрирует существенные пробелы в знаниях основного учебного материала, допускает грубые ошибки в формулировании основных понятий и при выполнении типовых заданий, не способен ответить на наводящие вопросы преподавателя. «неудовлетворительно» Оценка ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании образовательного учреждения без дополнительных занятий рассматриваемой дисциплине