МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Теория автоматического управления

направление подготовки: <u>15.03.05 – Конструкторско-технологическое</u> <u>обеспечение машиностроительных производств</u>

направленность (профиль): **Технологии цифрового проектирования и производства в машиностроении**

уровень образования: бакалавриат

форма обучения: заочная

общая трудоемкость дисциплины составляет: 3 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Иванов Ю.В., к.ф.-м.н., доцент

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

А.Г. Горбушин

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технологии цифрового проектирования и производства в машиностроении».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

Руководитель образовательной программы

А.Г. Горбушин

А.В. Овсянников

20.05.2025 г.

Аннотация к дисциплине «<u>Теория автоматического управления</u>»

Название дисциплины	Теория автоматического управления
Направление подготовки	15.03.05 «Конструкторско-технологическое
(специальность)	обеспечение машиностроительных производств»
Направленность	Технологии цифрового проектирования и
(профиль/программа/специализация)	производства в машиностроении
Место дисциплины	Блок 1. Дисциплины (модули). Обязательная
	часть
Трудоемкость (з.е. / часы)	3 з.е./108 часов
Цель изучения дисциплины	Получение студентами систематизированных
-	основ знаний и практических навыков в области
	теории автоматического управления и
	управления техническими системами.
Компетенции, формируемые в	ОПК-5 Способен использовать основные
результате освоения дисциплины	закономерности, действующие в процессе
	изготовления машиностроительных изделий
	требуемого качества, заданного количества при
	наименьших затратах общественного труда.
Содержание дисциплины (основные	Общие сведения о системах автоматического
разделы и темы)	управления (САУ). Математическое описание
,	линейных систем автоматического управления.
	Передаточные функции и характеристические
	уравнения САУ. Преобразования структурных
	схем линейных САУ. Качество систем
	автоматического управления. Устойчивость
	линейных систем автоматического управления.
Форма промежуточной	Зачет
аттестации	

1. Цели и задачи дисциплины:

Целью освоения дисциплины является получение студентами систематизированных основ знаний и практических навыков в области теории автоматического управления и управления техническими системами;

Задачи дисциплины:

- освоение структуры и методов построения систем управления объектами машиностроения и других прикладных областей в режиме реального времени, с применением в качестве систем управления программируемых логических контроллеров (ПЛК).
- освоение структуры и методов построения таких сложных и специфических систем управления какими являются системы числового программного управления станками и комплексами.
- ознакомление с современными тенденциями в области развития структур и функционалов программируемых контроллеров и систем ЧПУ.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№ п/п	Знания							
1.	общую теорию измерений, взаимозаменяемости, обеспечение единства							
	измерений;							
2.	алгоритмы обработки многократных измерений;							
3.	основные понятия в области стандартизации и сертификации.							

Умения, приобретаемые в ходе освоения дисциплины

№ п/п	Умения
1.	использовать общую теорию измерений;
2.	выбирать измерительные средства и методики измерений;
3.	пользоваться справочной и нормативной литературой.

Навыки, приобретаемые в ходе освоения дисциплины

	/ 1 1
№ п/п	Навыки
1.	владеть методами теоретических и экспериментальных исследований в
	метрологии;
2.	методами определения точности измерений;
3.	навыками применения справочной и нормативной литературы для решения
	профессиональных задач.

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-5.1	Знать: законы естественных наук	1, 2	-	-
ОПК-5.2	Уметь: применять	-	1, 2	-
	естественнонаучные законы для			
	обеспечения заданного качества			

	изделий и производительности			
ОПК-5.3	Владеть: навыками применения	-	_	1, 2
	основных закономерностей при			
	расчетах и в процессе изготовления			
	изделий машиностроения			

3. Место дисциплины в структуре ООП

Дисциплина относится к обязательной части/части, формируемой участниками образовательных отношений/дисциплинам по выбору Блока 1 «Дисциплины (модули)» ООП или относится к факультативным дисциплинам ООП.

Дисциплина изучается на <u>3</u> курсе в <u>5</u> семестре.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): средства и методы управления качеством, системный анализ, основы технического регулирования, сертификация систем качества

наименование предшествующих(ей) учебных(ой) дисциплин(ы) (модулей(я))

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): методы и средства измерений, испытаний и контроля, инжиниринг и реинжиниринг

наименование последующих(ей) учебных(ой) дисциплин(ы) (модулей(я))

4. Структура и содержание дисциплины

4.1 Структура дисциплин

№	Раздел дисциплины. Форма	Всего часов на раздел	Семестр	l	Распределение трудоемкости раздела (в часах) по видам учебной работы				Содержание самостоятельной	
п/п	промежуточной	По	[S		конт	гактна	Я		работы	
	аттестации (по семестрам)	Bcel		лек	пр	лаб	КЧА	CPC	риооты	
1	2	3	4	5	6	7	8	10	11	
1.	Общие сведения о системах автоматического регулирования (САР) и автоматического управления (САУ).	12	4	1				11	Устный опрос	
2.	Математическое описание линейных систем автоматического управления.	12	4	1				11	Устный опрос	
3.	Амплитудно-фазово- частотные характеристики.	14	4	1	1			12	Работа на практических занятиях: текущий контроль выполнения заданий	

4.	Логарифмические частотные характеристики.	14	4	1	1			12	Работа на практических занятиях: текущий контроль выполнения заданий
5.	Типовые динамические звенья.	13	4	1				12	Устный опрос
6.	Преобразования структурных схем линейных САУ.	14	4	1	1			12	Работа на практических занятиях: текущий контроль выполнения заданий
7.	Качество систем автоматического управления.	13	4	1				12	Устный опрос
8.	Устойчивость линейных систем автоматического управления.	14	4	1	1			12	Работа на практических занятиях: текущий контроль выполнения заданий
	Зачет	2	4	_	_	_	0,3	1,7	Зачет выставляется по совокупности результатов текущего контроля успеваемости
	Итого:	108	4	8	4	-	0,3	95,7	

4.2 Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды компетенции и индикаторов	Знания	Умения	Навыки	Форма контроля
1.	Общие сведения о системах автоматического регулирования (САР) и автоматического управления (САУ).	ОПК-5.1	1	1	1	устный опрос
2.	Математическое описание линейных систем автоматического управления.	ОПК-5.2	1	1	1	текущий контроль выполнения заданий
3.	Амплитудно-фазово- частотные характеристики.	ОПК-5.3	2	1	2	устный опрос
4.	Логарифмические частотные характеристики.	ОПК-5.1	2	2	2	текущий контроль выполнения заданий
5.	Типовые динамические	ОПК-5.2	2	2	3	устный опрос

	звенья.					
6.	Преобразования	ОПК-5.3	3	2	3	текущий
	структурных схем					контроль
	линейных САУ.					выполнения
						заданий
7.	Качество систем	ОПК-5.1	3	3	3	устный опрос
	автоматического					
	управления.					
8.	Устойчивость линейных	ОПК-5.2	3	3	1	текущий
	систем автоматического					контроль
	управления.					выполнения
						заданий

4.3 Наименование тем лекций, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лекций	Трудоем- кость (час)
1.	1.	1. Общие сведения о системах автоматического регулирования (САР) и автоматического управления (САУ). 1.1. Общие сведения о системах автоматического регулирования (САР) и автоматического управления (САУ). 1.2. Основные понятия и виды систем автоматического регулирования (САР) и автоматического управления (САУ). 1.3. Принцип управления по отклонению. 1.4. Принцип управления по возмущению. 1.5. Принцип комбинированного управления. 1.6. Функциональная схема системы регулирования. 1.7. Многоконтурная система автоматического регулирования.	1
2.	2.	 Математическое описание линейных систем автоматического управления. Характеристики линейных динамических звеньев. Классификация звеньев. Понятие переходный процесс и динамическое звено. Переходная и весовая характеристики звеньев. Уравнения звеньев системы. Линеаризация. Передаточные функции и характеристические уравнения САУ. Свойства передаточной функции динамического звена (системы). Преобразование структурных схем систем автоматического управления. Передаточные функции систем автоматического управления по задающему и возмущающему воздействиям. Временные характеристики динамических звеньев. Принципы построения временных характеристик. 	1
3.	3.	3. Амплитудно-фазово-частотные характеристики (АФЧХ). 3.1. Назначение АФЧХ. 3.2. Принципы построения АФЧХ. 3.3. Построение АФЧХ.	1
4.	4.	4. Логарифмические частотные характеристики.4.1. Назначение АФЧХ.4.2. Принципы построения АФЧХ.4.3. Построение АФЧХ.	1
5.	5.	5. Типовые динамические звенья.	1

		5.1. Безынерционное звено (усилительное).	
		5.2. Апериодическое звено.	
		5.3. Колебательное звено.	
		5.4. Идеальное дифференцирующее звено.	
		5.5. Реальное дифференцирующее звено.	
		5.6. Идеальное интегрирующее звено.	
		5.7. Реальное интегрирующее звено.	
		5.8. Форсирующее звено.	
		5.9. Звено чистого запаздывания.	
6.	6.	6. Преобразования структурных схем линейных САУ.	1
		6.1. Метод структурных преобразований.	
		6.2. Типовые элементы структурных схем.	
		6.3. Узел разветвления.	
		6.4. Сумматор.	
		6.5. Элемент сравнения.	
		6.6. Последовательное и параллельное соединение	
		динамических звеньев.	
		6.7. Преобразование структурных схем.	
		6.8. Соединение динамических звеньев с обратной связью.	
		6.9. Правила переноса узлов и сумматоров.	
		6.10. Принцип вложенности.	
7.	7.	7. Качество систем автоматического управления.	1
′′	'	7.1. Методы построения переходного процесса.	_
		7.2. Основные показатели качества при ступенчатом	
		входном воздействии.	
		7.3. Алгебраические и графо-аналитические методы	
		определения качества переходного процесса.	
8.	8.	8. Устойчивость линейных систем автоматического	1
0.	0.	управления.	-
		8.1. Методы определения устойчивости.	
		8.2. Алгебраические критерии устойчивости.	
		8.3. Оценка качества по распределению корней	
		характеристического уравнения.	
		8.4. Графические критерии устойчивости.	
		8.5. Анализ графических зависимостей.	
		8.6. Критерий устойчивости Михайлова.	
		8.7. Критерий устойчивости Гурвица.	
		8.8. Критерий устойчивости Гурвица.	
	Всего	о.о. притерии устоичивости паиквиста.	8
	Deero		0

4.4 Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1.	3	Построение амплитудно-фазово-частотных характеристик динамических звеньев.	1
2.	4	Построение логарифмических частотных характеристик динамических звеньев.	1
3.	6	Преобразования структурных схем линейных систем автоматического управления.	1
4.	8	Определение устойчивости линейных систем автоматического управления.	1
	Всего		4

4.5 Наименование тем лабораторных работ, их содержание и объем в часах

Лабораторные работы учебным планом не предусмотрены.

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине

Для контроля результатов освоения дисциплины проводятся (формы текущего контроля приводятся согласно таблице 4.2.):

– контрольные работы: *приводятся наименования контрольных* работ

Общие сведения о системах автоматического регулирования (САР) и автоматического управления (САУ).

Амплитудно-фазово-частотные характеристики.

Типовые динамические звенья.

Качество систем автоматического управления.

Устойчивость линейных систем автоматического управления.

— коллоквиумы: *приводятся наименования тем, по которым проводится коллоквиум*

Математическое описание линейных систем автоматического управления.

Логарифмические частотные характеристики.

Преобразования структурных схем линейных САУ.

- защиты лабораторных работ;
 - зачет.

Примечание: оценочные материалы (типовые варианты тестов, контрольных работ и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины – зачет.

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература:

- 1. Тяжев, А. И. Теория автоматического управления [Электронный ресурс] : учебник / А. И. Тяжев. Электрон. текстовые данные. Самара : Поволжский государственный университет телекоммуникаций и информатики, 2016. 164 с. 978-5-904029-64-7. Режим доступа: http://www.iprbookshop.ru/71889.html
- 2. Егоркин, О. В. Теория автоматического управления [Электронный ресурс] : методические указания к выполнению расчетно-графической работы по дисциплине «Теория автоматического управления» для студентов направления 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств» / О. В. Егоркин, Н. В. Назарова. Электрон. текстовые данные. Саратов : Вузовское образование, 2018. 59 с. 978-5-4487-0184-9. Режим доступа: http://www.iprbookshop.ru/73607.html

б) дополнительная литература:

- 1. Барметов, Ю. П. Теория автоматического управления. Лабораторный практикум [Электронный ресурс] : учебное пособие / Ю. П. Барметов, Е. А. Балашова, В. К. Битюков ; под ред. В. К. Битюков. Электрон. текстовые данные. Воронеж : Воронежский государственный университет инженерных технологий, 2017. 208 с. 978-5-00032-293-2. Режим доступа: http://www.iprbookshop.ru/74020.html
- 2. Гаврилов, А. Н. Теория автоматического управления технологическими объектами (линейные системы) [Электронный ресурс] : учебное пособие / А. Н. Гаврилов, Ю. П. Барметов, А. А. Хвостов ; под ред. С. Г. Тихомиров. Электрон. текстовые данные. Воронеж : Воронежский государственный университет инженерных технологий, 2016. 244 с. 978-5-00032-176-8. Режим доступа: http://www.iprbookshop.ru/50645.html
- 3. Пищухина, Т.А. Теорияавтоматическогоуправления. Часть [Электронный ресурс] А. Пищухина. Электрон. текстовые данные. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2016. 94 с. 978-5-7410-1727-2. Режимдоступа: http://www.iprbookshop.ru/71333.html
- 4. Федосенков, Б. А. Теория автоматического управления [Электронный ресурс] : современные разделы теории управления. Учебное пособие / Б. А. Федосенков. Электрон. текстовые данные. Кемерово : Кемеровский технологический институт пищевой промышленности, 2014. 153 с. 978-5-89289-863-8. Режим доступа: http://www.iprbookshop.ru/61292.html
- 5. Музылева, И. В. Теория автоматического управления. Линейные системы [Электронный ресурс] : методические указания к практическим занятиям / И. В. Музылева, А. А. Муравьев. Электрон. текстовые данные. Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2013. 84 с. 978-5-88247-613-6. Режим доступа: http://www.iprbookshop.ru/22938.html

в) перечень ресурсов информационно-коммуникационной сети Интернет:

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks.
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС http://94.181.117.43/cgi-bin/irbis64r_12/cgiirbis_64.exe?LNG=&C21COM=F&I21DBN=IBIS&P 21DBN=IBIS.
- 3. Национальная электронная библиотека http://нэб.рф.
- 4. Мировая цифровая библиотека http://www.wdl.org/ru/.
- 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
- 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp.

7. Справочно-правовая http://www.consultant.ru/.

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия (при наличии).

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации — при необходимости).

2. Практические занятия (при наличии).

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук – *при необходимости*).

Для практических занятий используются аудитория № <u>303</u>, оснащенная следующим оборудованием: ноутбук, проектор, экран, наборы слайдов.

3. Самостоятельная работа (при наличии).

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интеренет» и доступом к электронной информационно-образовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова (ауд. 201);
- помещения для самостоятельной работы обучающихся (указать ауд. 211, корпус №4).

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

Приложение к рабочей программе дисциплины (модуля)

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства по дисциплине

Теория автоматического управления

наименование – полностью

направление (специальность) 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»,

направленность (профиль) «Технологии цифрового проектирования и производства в машиностроении»

уровень образования: бакалавриат

форма обучения: заочная

общая трудоемкость дисциплины составляет: 3 зачетных единиц

1. Оценочные средства

Оценивание формирования компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ФОС. Связь разделов компетенций, индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины.

Оценочные средства соотнесены с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

Для каждого индикатора достижения компетенций, указанного в разделе 2 РПД, приводятся: код и наименование индикатора, соответствующие ему результаты обучения (знания, умения и навыки) и формы контроля (таблицы 4.1 и 4.2).

Если при освоении дисциплины предусматривается проведение нескольких видов текущего контроля (несколько лабораторных работ, практических работ, контрольных работ и т.д.), необходимо ввести нумерацию работ и соотнести их с результатами обучения.

Оценочные средства должны соответствовать проверяемым результатам обучения.

№ п/п	Коды компетенции и индикаторов	Результат обучения (знания, умения и навыки)	Формы текущего и промежуточного контроля
1.	ОПК-5.1	31, У1, Н1	тест; контрольная работа; защита лабораторных работ; практические работы; устный опрос.
2.	ОПК-5.2	32, Y2, H2	тест; контрольная работа; защита лабораторных работ; практические работы; устный опрос.
3.	ОПК-5.3	33, У3, Н3	тест; контрольная работа; защита лабораторных работ; практические работы; устный опрос.

Основные формы текущего контроля: тест; контрольная работа; практические работы; устный опрос.

Формы промежуточной аттестации: зачет.

Наименование: зачет

Представление в ФОС:

Перечень вопросов для проведения зачета:

- 1. Как связаны передаточная функция и комплексный коэффициент передачи?
- 2. Пояснить методику построения логарифмических частотных характеристик (ЛЧХ).
- 3. Записать формулы передаточных функций для типовых соединений звеньев. Как изменится участок структурной схемы при переносе сумматора через звено?
- 4. Дать определения переходной функции и функции веса динамического звена.
- 5. С помощью каких блоков можно создать апериодическое звено первого порядка?
- 6. Какова стандартная форма записи линейных уравнений в системах автоматического регулирования?
- 7. Что дает применение прямого преобразования Лапласа при математическом описании САУ?
- 8. Что такое передаточная функция элементов и систем автоматического регулирования, и как её получить по дифференциальным уравнениям?
- 9. Каким образом можно получить уравнение статики из уравнения динамики системы?
- 10. В чем заключается сущность, и как получается выражение для передаточного коэффициента элемента или системы автоматического регулирования?
- 11. Как получить характеристическое уравнение звена или САУ в целом?
- 12. Для каких цепей составляется и решается характеристическое уравнение?
- 13. Каким образом определяется амплитудная и фазовая частотные характеристики звеньев и САУ?
- 14. В чем заключается сущность частотных характеристик звеньев и САУ?
- 15. Дать понятие и объяснить логарифмические амплитудную и фазовую частотные характеристики.
- 16. Каким образом можно построить логарифмические амплитудную и фазовую частотные характеристики?
- 17. В чем сущность линеаризации дифференциального уравнения элементов, и как её практически осуществлять?
- 18. На примере инерционного звена показать, каким образом можно получить амплитудно-фазовую частотную характеристику звена?
- 19. Построить логарифмические амплитудно-частотные и фазо-частотные характеристики типовых динамических звеньев?
- 20. Чем отличаются реальные интегрирующие и дифференцирующие звенья от идеальных?

- 21. При каких условиях колебательное звено превращается в апериодическое звено второго порядка и в консервативное звено?
- 22. Что такое типовое динамическое звено?
- 23. Как составляется структурная схема САУ?
- 24. Что отображает структурная схема системы?
- 25. Какие вы знаете правила структурных преобразований?
- 26. Как составляется уравнение и передаточная функция разомкнутой одноконтурной системы?
- 27. Как определить передаточные функции многоконтурной системы?
- 28. Как определить передаточные функции одноконтурной системы относительно задающего и возмущающего воздействий для регулируемой величины?
- 29. Что такое передаточная функция системы по ошибке и как её определить?
- 30. Как по передаточным функциям линейной системы составить её дифференциальное уравнение для регулируемой величины и для ошибки?
- 31. Как из передаточной функции замкнутой систем определить характеристическое уравнение?
- 32. Постройте амплитудно-фазовые логарифмические И частотные характеристики систем, состоящих следующих последовательно ИЗ соединённых апериодического звеньев: И звена запаздывания; двух апериодических и усилительного.
- 33. Приведите передаточную функцию колебательного звена?
- 34. Определите характеристическое уравнение колебательного звена?
- 35. Построить частотную характеристику колебательного звена?
- 36. Что такое коэффициент демпфирования?
- 37. Каким образом получить консервативное звено из колебательного?
- 38. Какие реальные физические процессы описываются колебательным звеном?
- 39. Показать условие перерождения колебательного звена в апериодическое звено второго порядка?
- 40. Назвать основные показатели качества переходного процесса САУ?
- 41. Пояснить с помощью комплексной плоскости математическое условие устойчивости?
- 42. Дать определение критерия устойчивости Гурвица?
- 43. Условия работы пропорционального регулятора в линейной системе?
- 44. Условия работы пропорционально-интегрального регулятора в линейной системе?
- 45. Условия работы интегрального регулятора в линейной системе?
- 46. Привести показатели качества регулирования при пропорциональном регуляторе в линейной системе?
- 47. Привести показатели качества регулирования при пропорциональноинтегральном регуляторе в линейной системе?
- 48. Привести показатели качества регулирования при интегральном регуляторе в линейной системе?

- 49. Как вычисляется интегральный показатель качества?
- 50. Как уменьшить статическую ошибку САУ?

Критерии оценки:

Наименование: работа на лабораторных работах: текущий контроль выполнения заданий.

Представление в ФОС: перечень заданий

Варианты заданий:

Задание № 1

Постройте амплитудно-фазово-частотную характеристику динамического звена:

$$W(S) = \frac{KS}{TS + 1}$$

K=50, T=0.01 c.

Задание № 2

Постройте логарифмическую частотную характеристику динамического звена:

$$W(S) = \frac{K}{T^2 S^2 + 2\xi TS + 1}$$

K=150, T=0.05 c., $\xi=0.5$.

Задание № 3

Определите устойчивость линейной системы автоматического управления:

$$W(S) = \frac{K(TS+1)}{S}$$

K=100, T=0.05 c.

Критерии оценки:

Наименование: контроль самостоятельной работы: устный опрос

Представление в ФОС: перечень вопросов

Перечень вопросов для контроля самостоятельной работы:

- 1. Как связаны передаточная функция и комплексный коэффициент передачи?
- 2. Пояснить методику построения логарифмических частотных характеристик (ЛЧХ).
- 3. Что такое передаточная функция элементов и систем автоматического регулирования, и как её получить по дифференциальным уравнениям?
- 4. В чем заключается сущность частотных характеристик звеньев и САУ?
- 5. В чем сущность линеаризации дифференциального уравнения элементов, и как её практически осуществлять?
- 6. Что такое типовое динамическое звено?
- 7. Какие вы знаете правила структурных преобразований?

- 8. Что такое передаточная функция системы по ошибке и как её определить?
- 9. Что такое коэффициент демпфирования?
- 10. Дать определение критерия устойчивости Гурвица?
- 11. Условия работы пропорционального регулятора в линейной системе?
- 12. Условия работы пропорционально-интегрального регулятора в линейной системе?
- 13. Условия работы интегрального регулятора в линейной системе?
- 14. Привести показатели качества регулирования при пропорциональном регуляторе в линейной системе?
- 15. Как вычисляется интегральный показатель качества?
- 16. Как уменьшить статическую ошибку САУ?

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Информация приводится согласно таблице 4.2 РПД. Минимальное и максимальное количество баллов устанавливается для каждой формы текущего контроля, максимально возможная сумма баллов определяется преподавателем, реализующим дисциплину, но не более 100 баллов.

Разделы	Φ	Количество баллов	
дисциплины	Форма контроля	min	max
1.	Устный опрос	0	10
2.	Устный опрос	0	10
3.	Работа на практических занятиях: текущий контроль	0	10
	выполнения заданий		
4.	Работа на практических занятиях: текущий контроль	0	10
	выполнения заданий		
5.	Устный опрос	0	10
6.	Работа на практических занятиях: текущий контроль	0	10
	выполнения заданий		
7.	Устный опрос	0	10
8.	Работа на практических занятиях: текущий контроль	0	10
	выполнения заданий		

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Минимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обозначение	Показатели выставления минимального количества баллов	
Практическая работа	Задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий. На защите практической работы даны правильные ответы не менее чем на 50% заданных вопросов	
Лабораторная работа выполнена в полном объеме; Представлен отчет, содержащий необходимые расчеты, выв оформленный в соответствии с установленными требованиями; продемонстрирован удовлетворительный уровень владения материа при защите лабораторной работы, даны правильные ответы не м чем на 50% заданных вопросов		
Тест	Правильно решено не менее 50% тестовых заданий	
Устный опрос	Даны правильные ответы не менее чем на 50% заданных вопросов. Продемонстрированы знания основного учебно-программного материала	

Промежуточная аттестация по дисциплине проводится в форме зачета. Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«зачтено»	50-100
«не зачтено»	0-49

Если сумма набранных баллов менее 30 – обучающийся не допускается до промежуточной аттестации.

Если сумма баллов составляет от 30 до 50 баллов, обучающийся допускается до зачета.

Билет к зачету включает 4 теоретических вопроса.

Промежуточная аттестация проводится в письменной форме.

Время на подготовку: 45 минут.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки:

Оценка	Критерии оценки	
	Обучающийся демонстрирует знание основного учебно-	
//2011TALIO\\	программного материала в объеме, необходимом для дальнейшей	
«зачтено»	учебы, умеет применять его при выполнении конкретных заданий,	
	предусмотренных программой дисциплины	
	Обучающийся демонстрирует значительные пробелы в знаниях	
//HA POUTAHON	основного учебно-программного материала, допустил	
«не зачтено»	принципиальные ошибки в выполнении предусмотренных	
	программой заданий и не способен продолжить обучение	