МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Физика

направление подготовки: <u>15.03.05 – Конструкторско-технологическое</u> <u>обеспечение машиностроительных производств</u>

направленность (профиль): **Технологии цифрового проектирования и производства в машиностроении**

уровень образования: бакалавриат

форма обучения: заочная

общая трудоемкость дисциплины составляет: 10 зачетных единиц

Кафедра «Машиностроение и информационные технологии»

Составитель: Иванов Ю.В., к.ф.-м.н., доцент

Рабочая программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки 15.03.05 «Конструкторскотехнологическое обеспечение машиностроительных производств» и рассмотрена на заседании кафедры.

Протокол от 15.04.2025 г. № 4

Заведующий кафедрой

15.04.2025 г.

СОГЛАСОВАНО

Количество часов рабочей программы и формируемые компетенции соответствуют учебному плану по направлению подготовки 15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств», профиль «Технологии цифрового проектирования и производства в машиностроении».

Протокол заседания учебно-методической комиссии от 20 мая 2025 г. № 3

Председатель учебно-методической комиссии ГИЭИ

Руководитель образовательной программы

А.Г. Горбушин

А.В. Овсянников

20.05.2025 г.

Аннотация к дисциплине

Название дисциплины	Физика
Направление (специальность) подготовки	15.03.05 «Конструкторско-технологическое обеспечение машинострои- тельных производств»
Направленность (про- филь/программа/специализац ия)	Технологии цифрового проектирования и производства в машиностроении
Место дисциплины	Обязательная часть Блока 1. Дисциплины (модули)
Трудоемкость (з.е. / часы)	10 з.е. / 360 часов
Цель изучения дисциплины	Целью освоения дисциплины является ознакомление студентов с основными законами физики и возможностями их применения при решении задач, возникающих в их последующей профессиональной деятельности.
Компетенции, формируемые в результате освоения дисциплины	ОПК-5. Способен использовать основные закономерности, действующие в процессе изготовления машиностроительных изделий требуемого качества, заданного количества при наименьших затратах общественного труда
Содержание дисциплины (ос- новные разделы и темы)	Физические основы механики, механические колебания и волны. Основы молекулярной физики и термодинамики. Электричество. Электромагнетизм. Электромагнитные колебания и волны. Оптика. Квантовая природа излучения. Элементы квантовой физики атомов, молекул и твердых тел. Элементы физики атомного ядра и элементарных частиц.
Форма промежуточной ат- тестации	Экзамен / зачет с оценкой

1. Цели и задачи дисциплины:

Целью преподавания дисциплины является ознакомление студентов с основными законами физики и возможностями их применения при решении задач, возникающих в их последующей профессиональной деятельности.

Задачи дисциплины:

- изучение законов окружающего мира в их взаимосвязи;
- овладение фундаментальными принципами и методами решения научно-технических задач; формирование навыков по применению положений фундаментальной физики к грамотному научному анализу ситуаций, с которыми инженеру приходится сталкиваться при создании новой техники и новых технологий освоение основных физических теорий, позволяющих описать явления в природе, и пределов применимости этих теорий для решения современных и перспективных технологических задач;
- формирование у студентов основ естественнонаучной картины мира; ознакомление студентов с историей и логикой развития физики и основных её открытий.

2. Планируемые результаты обучения

В результате освоения дисциплины у студента должны быть сформированы

Знания, приобретаемые в ходе освоения дисциплины

№	Знания
п/п 3	
1.	основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях
2.	основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки
3.	назначение и принципы действия важнейших физических приборов.

Умения, приобретаемые в ходе освоения дисциплины

№ п/п У	Умения
1.	объяснить основные наблюдаемые природные и техногенные явления и эффек-
	ты с позиций фундаментальных физических взаимодействий
2.	указать, какие законы описывают данное явление или эффект
3.	истолковывать смысл физических величин и понятий; записывать уравнения для
	физических величин в системе СИ
4.	работать с приборами и оборудованием современной физической лаборатории
5.	использовать различные методики физических измерений и обработки экспери-
	ментальных данных
6.	использовать методы адекватного физического и математического моделирова-
	кин

Навыки, приобретаемые в ходе освоения дисциплины

№ п/п	Навыки
1.	навыки использования основных общефизических законов и принципов в важнейших практических приложениях
2.	основными методами физико-математического анализа для решения естественнонаучных задач

3.	навыками правильной эксплуатации основных приборов и оборудования современной физической лаборатории
4.	методикой обработки и интерпретирования результатов эксперимента
5.	методами физического моделирования в инженерной практике

Компетенции, приобретаемые в ходе освоения дисциплины

Компетенции	Индикаторы	Знания	Умения	Навыки
ОПК-5. Способен использовать основные	ОПК-5.1. Знать: законы естественных наук	1,2,3	1,2,3,6	1,2,4,5
закономерности, действующие в процессе изготовления машиностроительных изделий	ОПК-5.2. Уметь: применять естественнонаучные законы для обеспечения заданного качества изделий и производительности	1,2,3	1,2,3,4,5,6	1,2,3,4,5
требуемого качества, заданного количества при наименьших затратах общественного труда	ОПК-5.3. Владеть: навыками применения основных закономерностей при расчетах и в процессе изготовления изделий машиностроения	1,2,3	1,2,3,4,5,6	1,2,3,4,5

3. Место дисциплины в структуре ООП:

Дисциплина относится к обязательной части Блока 1 «Дисциплины (модули)». Дисциплина изучается на 1 курсе в 1 и 2 семестрах.

Изучение дисциплины базируется на знаниях, умениях и навыках, полученных при освоении дисциплин (модулей): Физика, Математика, Химия.

Перечень последующих дисциплин (модулей), для которых необходимы знания, умения и навыки, формируемые данной учебной дисциплиной (модулем): Теоретическая механика, Сопротивление материалов, Технология конструкционных материалов, Теория механизмов и машин, Материаловедение, Электротехника и электроника, Безопасность жизнедеятельности.

4. Структура и содержание дисциплины

4.1. Структура дисциплин

№ п/п	Раздел дисциплины. Форма промежуточной аттестации	сего часов на раздел	Семестр				доемкос видам уч гы	Содержание самостоя- тельной работы		
11/11	(по семестрам)	Всего на ра	ပိ		конт	актная		CPC	тельной работы	
	` * ′	m _		ЛК	пр	лаб	КЧА			
1	2	3	4	5	6	7	8	9	10	
1.	Физические основы механики	59	1	3	1	1		54	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторной работы № 1, подготовка к коллоквиуму № 1 [6] подготовка к практическим занятиям	
2.	Механические колебания.	38	1	1	2	1		34	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторной работы № 2, подготовка к коллоквиуму № 1 [6] подготовка к практическим занятиям	
3.	Основы специальной теории относительности.	22	1	1	1	-		20	[1-5] конспектирование лекций, подготовка к кол-	

							1	1	
									локвиуму № 1 [6] подготовка к практиче- ским занятиям
4.	Молекулярная физика и термодинамика.	44	1	3	2	2		39	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторных работ № 3, 4; подготовка к коллоквиуму № 2 [6] подготовка к практическим занятиям
5.	Электрическое поле в вакууме. Электрическое поле в веществе. Постоянный электрический ток.	44	1	2	2	-		40	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторных работ № 5, 6 [6] подготовка к практическим занятиям,
	Экзамен	9	1	1	-	-	0,4	8,6	[1-6] Экзамен принимается по теоретическому и практическому материалу 1-го семестра (п. 1-5)
	Итого за 1 семестр:	216	1	10	8	4	0,4	193,6	
6.	Магнитное поле. Магнитные свойства вещества. Переменное электромагнитное поле. Уравнения Максвелла для электромагнитного поля.	48	2	2	1	2		43	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторных работ № 5, 6; подготовка к коллоквиуму № 3 [6] подготовка к практическим занятиям
7.	Электромагнитные колебания и волны.	31	2	2	1	2		26	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторных работ № 7, 8; подготовка к коллоквиуму № 4 [6] подготовка к практиским занятиям
8.	Волновая оптика	34	2	1	0,5	2		30,5	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторных работ № 9, 10; подготовка к коллоквиуму № 4 [6] подготовка к практиским занятиям
9.	Квантовые свойства электромагнитного излучения	25	2	1	0,5	1		22,5	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторной работы № 11; подготовка к коллоквиуму № 4 [6] подготовка к практиским занятиям
10.	Элементы квантовой физики атомов, молекул и твердых тел	26	2	1	0,5	1		23,5	[1-5] конспектирование лекций, подготовка к выполнению и защите лабораторной работы № 12 [6] подготовка к практиским занятиям
11.	Элементы физики ядра и элементарных частиц	14	2	1	0,5	-		12,5	[1-5] конспектирование лекций [6] подготовка к практис-

								ким занятиям	
Зачет с оценкой	2	2	-	-	-	0,4	1,6	[1-6] Зачет выставляется	
								по совокупности результа-	
								тов текущего контроля	
								успеваемости (п.6-11)	
Итого за 2 семестр:	180	2	8	4	8	0,4	159,6		
Итого:	396	1-2	18	12	12	0,8	219,2		

4.2. Содержание разделов курса и формируемых в них компетенций

№ п/п	Раздел дисциплины	Коды ком- петенции и индикаторов	Знания	Умения	Навыки	Форма текущего контроля
1	Физические основы механи-ки	ОПК 5. ОПК 5.1, ОПК 5.2, ОПК 5.3	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабораторных работ Работа на практических занятиях: фронтальный опрос по решению домашних задач. Конспектирование лекций. Коллокваум № 1.
2	Механические колебания.	ОПК 5 ОПК 5.1, ОПК 5.2, ОПК 5.3	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабораторных работ Работа на практических занятиях: фронтальный опрос по решению домашних задач. Конспектирование лекций. Коллокваум № 1.
3	Основы специальной теории относительности.	ОПК 5 ОПК 5.1, ОПК 5.2, ОПК 5.3	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Работа на практических занятиях: фронтальный опрос по решению домашних задач. Конспектирование лекций. Коллокваум № 1.
4	Молекулярная физика и термодинамика.	ОПК 5 ОПК 5.1, ОПК 5.2, ОПК 5.3	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабораторных работ Работа на практических занятиях: фронтальный опрос по решению домашних задач. Конспектирование лекций. Коллокваум № 2.
5	Электрическое поле в вакууме. Электрическое поле в веществе. Постоянный электрический ток.	ОПК 5 ОПК 5.1, ОПК 5.2, ОПК 5.3	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабораторных работ Работа на практических занятиях: фронтальный опрос по решению домашних задач. Конспектирование лекций.
6	Магнитное поле. Магнитные свойства вещества. Переменное электромагнитное поле.	ОПК 5 ОПК 5.1,	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабора- торных работ Работа на практи-

	Уравнения Максвелла для	ОПИ 5 2				
	электромагнитного поля.	ОПК 5.2, ОПК 5.3				ческих занятиях: фронтальный опрос по решению
						домашних задач.
						Конспектирование лекций.
						Коллокваум № 3.
7	Электромагнитные колеба-	ОПК 5	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабора-
	ния и волны.	ОПК 5.1,				торных работ Работа на практи-
		ОПК 5.2, ОПК 5.3				ческих занятиях:
		OHK 3.3				фронтальный
						опрос по решению
						домашних задач. Конспектирование
						лекций.
	D.		1.0.0	100456	12245	Коллокваум № 4.
8	Волновая оптика	ОПК 5	1,2,3,	1,2,3,4,5,6	1,2,3,4,5	Защита лабора- торных работ
		ОПК 5.1, ОПК 5.2,				Работа на практи-
		ОПК 5.2, ОПК 5.3				ческих занятиях:
		OTHC 3.3				фронтальный опрос по решению
						домашних задач.
						Конспектирование
						лекций.
9	Квантовые свойства элек-	ОПК 5	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Коллокваум № 4. Защита лабора-
	тромагнитного излучения	ОПК 5.1,	1,2,5	1,2,5, 1,5,0	1,2,0,1,0	торных работ
		ОПК 5.2,				Работа на практи-
		ОПК 5.3				ческих занятиях: фронтальный
						опрос по решению
						домашних задач.
						Конспектирование
						лекций. Коллокваум № 4.
10	Элементы квантовой физики	ОПК 5	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Защита лабора-
	атомов, молекул и твердых	ОПК 5.1,				торных работ
	тел	ОПК 5.2,				Работа на практи- ческих занятиях:
		ОПК 5.3				фронтальный
						опрос по решению
						домашних задач.
						Конспектирование лекций.
11	Элементы физики ядра и	ОПК 5	1,2,3	1,2,3,4,5,6	1,2,3,4,5	Работа на практи-
	элементарных частиц	ОПК 5.1,				ческих занятиях:
		ОПК 5.2,				фронтальный опрос по решению
		ОПК 5.3				домашних задач.
						Конспектирование
						лекций.

4.3. Наименование тем лекций, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лекций	Трудоем- кость (час)
1.	1	Введение. Предмет физики и связь с другими науками	0,5
2.	1	Кинематика точки и твердого тела	0,5
3.	1	Динамика материальной точки.	0,5
4.	1	Динамика твердого тела	0,5
5.	1	Работа, мощность, энергия.	1

6.	1	Законы сохранения энергии и импульса	-	
7.	2	Гармонические колебания	0,25	
8.	2	Сложение гармонических колебаний		
9.	2	Свободные затухающие колебания.		
10.	2	Вынужденные колебания. Резонанс.	0,25	
11.	3	Преобразования Галилея. Механический принцип относительности.	0,5	
12.	3	Постулаты специальной теории относительности Эйнштейна. Преоб-	0,5	
	3	разования Лоренца и следствия из них.		
13.	3	Релятивистская динамика	-	
14.	4	Молекулярная физика	0,5	
15.	4	Кинетическая теория газов, явления переноса.	0,25	
16.	4	Основы термодинамики	0,25	
17.	5	Основные законы и положения электростатики.	0,5	
18.	5	Электрическое поле в веществе	0,25	
19.	5	Сила и плотность электрического тока. Уравнение непрерывности.	0,25	
20.	5	Квазистационарный электрический ток. Сторонние силы и э.д.с.	-	
21.		Законы Ома и Джоуля-Ленца в дифференциальной и интегральной	_	
	5	формах. Мощность тока.	1	
22.	6	Магнитное поле и его характеристики. Закон Био – Савара – Лапласа.	0,5	
23.		Поток вектора магнитной индукции. Теорема Гаусса для магнитного	0,25	
	6	поля, в том числе в дифференциальной форме.	,,_,	
24.		Магнитные моменты электронов и атомов. Магнитное поле в веще-	0,25	
	6	CTBe.	0,23	
25.	6	Электромагнитная индукция.	0,5	
26.	6	Система уравнений Максвелла.	0,5	
27.	7	Электромагнитные колебания.	-	
28.	7	Электромагнитные колсоания.	2	
29.	8	Интерференция света.	0,5	
30.	8	Дифракция света.	0,25	
31.	8	Взаимодействие электромагнитных волн с веществом	0,25	
32.	9	Квантовые свойства электромагнитного излучения.	0,5	
33.	9	Тепловое излучение.	0,5	
34.	9	Фотоэффект и эффект Комптона.	-	
35.	10	Гипотеза и формула де Бройля. Соотношение неопределенностей	0,25	
36.	10	Волновая функция и её статистический смысл.	0,25	
37.	10	Общее уравнение Шредингера.	0,25	
38.	10	Стационарное состояние. Уравнение Шредингера для стационарных	0,25	
50.	10	состояний.	0,23	
39.	11	Ядерные силы.	0,25	
40.	11	Основные сведения о ядерной энергетике.	0,25	
41.	11	Элементарные частицы: фундаментальные взаимодействия.	0,25	
42.	11	Классификация элементарных частиц.	0,25	
	Всего		18	
	2010		10	

4.4. Наименование тем практических занятий, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование практических работ	Трудоем- кость (час)
1.	1	Кинематика поступательного движения	0,1
2.	1	Кинематика вращательного движения. Связь линейных	0,1
		характеристик движения с угловыми.	
3.	1	Динамика поступательного движения.	0,2
4.	1	Работа и энергия. Законы сохранения.	0,2
5.	1	Основной закон динамики вращательного движения.	0,2
6.	1	Закон сохранения момента импульса.	0,1

7.	1	Работа и энергия при вращательном движении 0,1		
8.	2	Механические колебания 2		
9.	3	Основы специальной теории относительности.	1	
10.	4	Идеальный газ. Уравнение состояния идеального газа.		
		Изопроцессы		
11.	4	Основы термодинамики. Теплоемкость. Первое начало 0,5		
		термодинамики		
12.	4	Энтропия. Второе начало термодинамики. Цикл Карно.	0,5	
13.	5	Электростатика.	1	
14.	5	Постоянный электрический ток. Законы постоянного	1	
		тока.		
15.	6	Магнитное поле постоянного тока. Применение закона	0,2	
		Био-Савара-Лампаса к расчету магнитных полей.		
16.	6	Закон Ампера. Работа по перемещению проводника и	0,2	
		контура с током в магнитном поле.		
17.	6	Сила Лоренца. Движение заряженных частиц в маг-	0,2	
		нитном поле.		
18.	6	Явление электромагнитной индукции. Закон Фарадея-	0,2	
		Ленца		
19.	6	Явление самоиндукции и взаимоиндукции.	0,2	
20.	7	Электромагнитные колебания и волны.	1	
21.	8	Интерференция света. Условия максимумов и мини-	0,25	
		мумов при интерференции. Интерференция в тонких		
		пленках. Кольца Ньютона.		
22.	8	Дифракция света. Дифракция Френеля. Дифракция	0,25	
		Фраунгофера на щели и на решетке.		
23.	9	Законы теплового излучения. Формула Релея-Джинса.	0,5	
		Формула Планка. Уравнение Эйнштейна для внешнего		
		фотоэффекта. Эффект Комптона.		
24.	10	Гипотеза и формула де-Бройля. Соотношение неопре-	0,1	
		деленностей.		
25.	10	Собственная волновая функция Шредингера. Атом во-	0,2	
		дорода в квантовой механике.		
26.	10	Туннельный эффект. Коэффициент прозрачности пря-	0,2	
		моугольного потенциального барьера.		
27.	11	Энергия связи ядра. Радиоактивность.	0,5 12	
	Всего		12	

4.5. Наименование тем лабораторных работ, их содержание и объем в часах

№ п/п	№ раздела дисциплины	Наименование лабораторных работ	Трудоем- кость (час)
1.	1	Проверка основного закона динамики вращательного движения.	1
2.	2	Определение момента инерции с помощью маятника Максвелла.	1
3.	4	Определение показателя адиабаты воздуха методом Клемана-Дезорма.	-
4.	4	Определение удельной теплоемкости металлов методом охлаждения.	2
5.	5	Определение относительной диэлектрической проницаемости материалов.	-

6.	5,7	Изучение цепи переменного тока.	-
7.	6	Определение удельного заряда электрона методом	
		магнетрона.	
8.	7	Изучение сложения гармонических колебаний.	2
9.	8	Изучение явления интерференции света в тонких плен-	1
		ках на примере колец Ньютона.	
10.	8	Изучение явления поляризации света. Проверка закона	1
		Малюса.	
11.	9	Изучение законов внешнего фотоэффекта.	1
12.	10	Исследование температурной зависимости сопротив-	1
		ления металла и полупроводника.	
	Всего		12

5. Оценочные материалы для текущего контроля успеваемости и промежуточной аттестации по дисциплине.

Для контроля результатов освоения дисциплины проводятся:

- коллоквиумы;
- защита лабораторных работ;
- работа на практических занятиях: фронтальный опрос по решению домашних задач;
- конспектирование лекций.

Примечание: Оценочные средства (вопросы для проведения коллоквиумов, экзамена, зачета и др.) приведены в приложении к рабочей программе дисциплины.

Промежуточная аттестация по итогам освоения дисциплины:

1 семестр – экзамен;

2 семестр -. зачет с оценкой

6. Учебно-методическое и информационное обеспечение дисциплины:

а) основная литература

- 1. Е. И. Дмитриева. Физика [Электронный ресурс] : учебное пособие / Е. И. Дмитриева. 2-е изд. Электрон. Текстовые данные. Саратов: Ай Пи Эр Медиа, 2019. 143 с. 978-5-4486-0445-4. Режим доступа: http://www.iprbookshop.ru/79822.html
- 2. С. И. Кузнецов. Курс лекций по физике. Электростатика. Постоянный ток. Электромагнетизм. Колебания и волны [Электронный ресурс] : учебное пособие / С. И. Кузнецов, Л. И. Семкина, К. И. Рогозин. Электрон. Текстовые данные. Томск: Томский политехнический университет, 2016. 290 с. 978-5-4387-0562-8. Режим доступа: http://www.iprbookshop.ru/55192.html

б) дополнительная литература

- 3. И. И. Ташлыкова-Бушкевич. Физика. Часть 1. Механика. Молекулярная физика и термодинамика. Электричество и магнетизм [Электронный ресурс] : учебник / И. И. Ташлыкова-Бушкевич. Электрон. Текстовые данные. Минск: Вышэйшая школа, 2014. 304 с. 978-985-06-2505-2. Режим доступа: http://www.iprbookshop.ru/35562.html
- 4. И. И. Ташлыкова-Бушкевич. Физика. Часть 2. Оптика. Квантовая физика. Строение и физические свойства вещества [Электронный ресурс] : учебник / И. И. Ташлыкова-Бушкевич. Электрон. Текстовые данные. Минск: Вышэйшая школа, 2014. 232 с. 978-985-06-2506-9. Режим доступа: http://www.iprbookshop.ru/35563.html
- 5. <u>Трофимова Т. И.</u> Курс физики : учеб. Пособие для вузов / Трофимова Т. И. 12-е изд., стер. М.: Академия, 2006.-557 с.

Экземпляры всего: 96

6. Волькенштейн В. С. Сборник задач по общему курсу физики : для студентов технических вузов / В. С. Волькенштейн. — 3-е изд., испр. И доп. — Санкт-Петербург : Книжный мир, 2005. - 328 с.

Экземпляры всего: 504

в) методические указания

- 1. Изучение движения маятника Максвелла. Уч.-метод. пособие по дисциплине «Физика» / сост. В.Вал. Соболев, Е.А. Антонов. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 2. Проверка основного закона динамики вращательного движения. Уч.-метод. пособие. по дисциплине «Физика» / сост. Л.Е. Морозова. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 3. Определение удельной теплоемкости металлов методом охлаждения. Уч.-метод. пособие. по дисциплине «Физика» / сост. В.Вал. Соболев, Е.А. Антонов. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 4. Определение показателя адиабаты воздуха методом Клемана-Дезорма. Уч.-метод. пособие. по дисциплине «Физика» / сост. В.Вал. Соболев, Л.И. Жданова. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 5. Определение удельного заряда электрона методом магнетрона. Учебно-методическое пособие по дисциплине «Физика» / сост. В.Вал. Соболев, Е.А. Антонов. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 6. Определение относительной диэлектрической проницаемости материалов. Учебнометод. пособие. по дисциплине «Физика» / сост. Ю.А. Шихов, О.Ф. Шихова. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 7. Изучение цепи переменного тока. Учебно-метод. пособие. по дисциплине «Физика» / сост. Е.А. Наймушина Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 8. Изучение сложения гармонических колебаний. Учебно-методическое пособие по дисциплине «Физика» / сост. Е.А. Наймушина Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 9. Изучение явления поляризации света. Проверка закона Малюса. Учебно-методическое пособие по выполнению лабораторных и самостоятельных работ по дисциплине «Физика» / сост. Соболев В.Вал. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 10. Изучение явления интерференции света в тонких пленках на примере колец Ньютона. Учебно-методическое пособие по выполнению лабораторных и самостоятельных работ по дисциплине «Физика» / сост. Соболев В.Вал. - Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 11. Изучение законов внешнего фотоэффекта. Учебно-методическое пособие по выполнению лабораторных и самостоятельных работ по дисциплине «Физика» / сост. Морозова Л.Е. Ижевск: ИжГТУ, 2018. (ЭУМКД)
- 12. Исследование температурной зависимости сопротивления металла и полупроводника. Учебно-методическое пособие по выполнению лабораторных и самостоятельных работ по дисциплине «Физика» / сост. Морозова Л.Е. Ижевск: ИжГТУ, 2018. (ЭУМКД)

Г) перечень ресурсов информационно-коммуникационной сети Интернет

- 1. Электронно-библиотечная система IPRbooks http://istu.ru/material/elektronno-bibliotechnaya-sistema-iprbooks
- 2. Электронный каталог научной библиотеки ИжГТУ имени М.Т. Калашникова Web ИРБИС

 http://94.181.117.43/cgibin/irbis64r
 http://94.181.117.43/cgibin/irbis64r
 - 3. Национальная электронная библиотека http://нэб.pd.
 - 4. Мировая цифровая библиотека http://www.wdl.org/ru/
 - 5. Международный индекс научного цитирования Web of Science http://webofscience.com.
 - 6. Научная электронная библиотека eLIBRARY.RU https://elibrary.ru/defaultx.asp
 - 7. Справочно-правовая система КонсультантПлюс http://www.consultant.ru/

д) лицензионное и свободно распространяемое программное обеспечение:

- 1. Microsoft Office (лицензионное ПО)
- 2. LibreOffice (свободно распространяемое ПО)
- 3. Doctor Web (лицензионное ПО)

7. Материально-техническое обеспечение дисциплины:

1. Лекционные занятия

Учебные аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, ноутбук)).

2. Практические занятия

Учебные аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, ноутбук).

3. Лабораторные занятия

Для лабораторных занятий используются аудитории № 423:

 $ay\partial$. № 423 — установка классная физическая ФПМ-01, ФПМ-03, ФПМ-04, ФПМ-05, ФПМ-06, ФПМ-08, ФПМ-09, маятник физический ФП-1, математический маятник, установка ФП-3, весы технические МК-6,2-A22, наборы грузов, линейки, секундомер, установка ФПТ1-1н; ФПТ1-7; реостаты, осциллограф С1-68, милливольтметр М45, вольтметр В3-38, В7-21, генератор Г3-53, измеритель магнитной индукции РШ1-10, блок питания ТЭС-13, магазин сопротивлений Р33, соленоиды, катушки индуктивности, блок УЛС, прибор ФКЛ-14.

3. Самостоятельная работа

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интеренет» и доступом к электронной информационнообразовательной среде ИжГТУ имени М.Т. Калашникова:

- научная библиотека ИжГТУ имени М.Т. Калашникова.

При необходимости рабочая программа дисциплины (модуля) может быть адаптирована для обеспечения образовательного процесса инвалидов и лиц с ограниченными возможностями здоровья, в том числе для обучения с применением дистанционных образовательных технологий. Для этого требуется заявление студента (его законного представителя) и заключение психолого-медико-педагогической комиссии (ПМПК).

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ижевский государственный технический университет имени М.Т. Калашникова»

Оценочные средства

по дисциплине

Физика

(наименование – полностью)

направление (специальность) <u>15.03.05</u> «Конструкторско-технологическое обеспечение машиностроительных производств»

(шифр, наименование – полностью)

направленность (профиль/программа/специализация) «Технологии цифрового проектирования и производства в машиностроении»

(наименование – полностью)

уровень образования: бакалавриат

форма обучения: заочная (очная, очно-заочная или заочная)

общая трудоемкость дисциплины составляет: 11 зачетных единиц

1. Оценочные средства

Оценивание формирование компетенций производится на основе результатов обучения, приведенных в п. 2 рабочей программы и ОС. Связь разделов дисциплины, компетенций, их индикаторов и форм контроля (текущего и промежуточного) указаны в таблице 4.2 рабочей программы дисциплины

Оценочные средства, соотнесенные с результатами обучения по дисциплине и индикаторами достижения компетенций, представлены ниже.

№	Коды компетенции и	Результат обучения	Формы текущего и промежу-
п/п	индикаторов	(знания, умения и навыки)	точного контроля
1.	ОПК-5.1. Знать: законы естественных наук	31. Знает основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях. 32. Знает основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки 33. Знает назначение и принципы действия важнейших физических приборов. У1. Умеет объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; У2. Умеет указать, какие законы описывают данное явление или эффект; У3. Умеет истолковывать смысл физических величин и понятий; записывать уравнения для физических величин в системе СИ; У6. Умеет использовать методы адекватного физического и математического моделирования. Н1. Владеет навыками использования основных общефизических законов и принципов в важнейших практических приложениях; Н2. Владеет основными методами физикоматематического анализа для решения естественнонаучных задач; Н4. Владеет методикой обработки и интерпретирования результатов эксперимента; Н5. Владеет методами физического	Работа на практических занятиях: фронтальный опрос по решению домашних задач Лабораторные работы № 1-12. Конспектирование лекций. Коллоквиум. Экзамен (вопросы 1 – 47) Зачет с оценкой (вопросы 1 – 58).
2.	ОПК-5.2. Уметь: применять естественнона- учные законы для обес- печения заданного ка- чества изделий и произ- водительности	моделирования в инженерной практике. 31. Знает основные физические явления и основные законы физики; границы их применимости, применение законов в важнейших практических приложениях. 32. Знает основные физические величины и физические константы, их определение, смысл, способы и единицы их измерения; фундаментальные физические опыты и их роль в развитии науки 33. Знает назначение и принципы действия важнейших физических приборов. У1. Умеет объяснить основные наблюдаемые природные и техногенные явления и эффекты с позиций фундаментальных физических взаимодействий; У2. Умеет указать, какие законы описывают данное явление или эффект;	Работа на практических занятиях: фронтальный опрос по решению домашних задач. Лабораторные работы № 1-12. Конспектирование лекций. Коллоквиум. Экзамен (вопросы 1 – 47) Зачет с оценкой (вопросы 1 – 58).

№ п/п	Коды компетенции и	Результат обучения (знания, умения и навыки)	Формы текущего и промежу- точного контроля
11/11	индикаторов	,	точного контроля
		УЗ. Умеет истолковывать смысл физических	
		величин и понятий; записывать уравнения для физических величин в системе СИ;	
		учалических величин в системе Си, Учалических величин в системе Си,	
		нием современной физической лаборатории;	
		У5. Умеет использовать различные методики	
		физических измерений и обработки экспери-	
		ментальных данных;	
		У6. Умеет использовать методы адекватного	
		физического и математического моделирова-	
		ния.	
		Н1. Владеет навыками использования основных	
		общефизических законов и принципов в	
		важнейших практических приложениях;	
		н2. Владеет основными методами физико-	
		математического анализа для решения	
		естественнонаучных задач;	
		Н3. Владеет навыками правильной	
		эксплуатации основных приборов и	
		оборудования современной физической	
		лаборатории;	
		Н4. Владеет методикой обработки и	
		интерпретирования результатов эксперимента;	
		Н5. Владеет методами физического	
		моделирования в инженерной практике.	
3.	ОПК-5.3. Владеть:	31. Знает основные физические явления и	Работа на практических заняти-
	навыками применения	основные законы физики; границы их	ях: фронтальный опрос по ре-
	основных закономерно-	применимости, применение законов в	шению домашних задач
	стей при расчетах и в	важнейших практических приложениях.	Лабораторные работы № 1-12.
	процессе изготовления	32. Знает основные физические величины и	Конспектирование лекций.
	изделий машинострое-	физические константы, их определение, смысл,	Коллоквиум.
	ния	способы и единицы их измерения;	Экзамен (вопросы 1 – 47)
		фундаментальные физические опыты и их роль	Зачет с оценкой (вопросы 1 –
		в развитии науки	58).
		33. Знает назначение и принципы действия	
		важнейших физических приборов.	
		У1. Умеет объяснить основные наблюдаемые	
		природные и техногенные явления и эффекты с	
		позиций фундаментальных физических взаимо-	
		действий;	
		У2. Умеет указать, какие законы описывают	
		данное явление или эффект;	
		У3. Умеет истолковывать смысл физических величин и понятий; записывать уравнения для	
		физических величин в системе СИ;	
		учалических величин в системе Ст, У4. Умеет работать с приборами и оборудова-	
		нием современной физической лаборатории;	
		уб. Умеет использовать различные методики	
		физических измерений и обработки экспери-	
		ментальных данных;	
		У6. Умеет использовать методы адекватного	
		физического и математического моделирова-	
		ния.	
		Н1. Владеет навыками использования основных	
		общефизических законов и принципов в	
		важнейших практических приложениях;	
		нажиения практических приложениях,	
		математического анализа для решения	
		естественнонаучных задач;	
		Н3. Владеет навыками правильной	

N₂	Коды компетенции и	P	езультат обуче	ния	Формы текущего и промежу-
п/п	индикаторов	(зна	ния, умения и на	выки)	точного контроля
		оборудования	современной	і физической	
		лаборатории;	лаборатории;		
		Н4. Владеет	методикой	обработки и	
		интерпретирова	интерпретирования результатов эксперимента;		
		Н5. Владее	т методами	физического	
		моделирования	в инженерной п	рактике.	

Описание элементов для оценивания формирования компетенций

Наименование: работа на практических занятиях: фронтальный опрос по решению домашних задач.

Представление в ФОС: перечень заданий

Варианты заданий:

1 семестр

- 1. С башни брошен камень в горизонтальном направлении с начальной скоростью 40 м/с. Какова скорость камня через 3 с после начала движения? Какой угол образует вектор скорости камня с плоскостью горизонта в этот момент?
- 2. Движение двух тел описывается уравнениями $x_1 = 0.75t^3 + 2.25t^2 + t$ и $x_2 = 0.25t^3 + 3t^2 + +1.5t$. Определить величину скоростей этих тел и момент времени, когда ускорения их будут одинаковы, а также значение ускорения в этот момент времени.
- 3. Точка начала двигаться по окружности радиусом 0,6 м с тангенциальным ускорением 0,1 м/с2. Чему равны нормальное и полное ускорения в конце третьей секунды после начала движения? Чему равен угол между векторами полного и нормального ускорений в этот момент?
- 4. Нормальное ускорение точки, движущейся по окружности радиусом 4 м, задается уравнением $a_n = 9t^2 + 6t + 1$. Определите: тангенциальное ускорение точки, путь пройденный точкой за 5с после начала движения, полное ускорение в момент времени $t_2 = 1$ с.
- 5. Шарик массой 200 г, подвешенный на нити длиной 56 см. совершает колебания в вертикальной плоскости. Сила натяжения нити, когда нить составляет угол $\alpha = 50^{\circ}$ с вертикалью, равна 4,5 H. Определите скорость шарика в этот момент времени.
- 6. Через невесомый блок, укрепленный на конце стола, перекинута невесомая, нерастяжимая нить к концам которой прикреплены два груза одинаковой массы (0,5 кг). Один из них движется по поверхности стола, другой вертикально вниз. Коэффициент трения груза о стол равен 0,15. Определите ускорение с которым движутся грузы и силу натяжения нити.
- 7. Сплошной диск радиусом 20 см вращается под действием постоянной касательной силы 40 Н. Кроме того, на него действует момент сил трения 2 Н*м. Угловое ускорение диска равно 30 рад/с². Определить массу диска.
- 8. Мальчик катит обруч по горизонтальной дороге со скоростью v=2 м/с. На какую высоту Н может вкатиться обруч на горку за счет своей кинетической энергии?
- 9. Тонкий однородный стержень длиной 20см может вращаться вокруг горизонтальной оси, проходящей через конец стержня перпендикулярно ему. Стержень отклонили на 90° от положения равновесия и отпустили. Определить скорость нижнего конца стержня в момент прохождения положения равновесия.
- 10. Карандаш длиной 15 см, поставленный вертикально, падает на стол. Какую угловую и линейную скорость будет иметь в конце падения середина карандаша? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
- 11. Точка совершает гармонические колебания с частотой v = 10 Гц. В момент времени, принятый за начальный, точка имела максимальное смещение 1 мм. Написать уравнение колебаний точки и начертить их график.
- 12. Смещение гармонического осциллятора в зависимости от времени определяется соотношением $x(t)=2,4\cos((5\pi/4)t+\pi/6)$, где х измеряется в метрах, а t в секундах. Найти период, частоту колебаний, смешение и скорость в момент времени t=0.
- 13. Максимальная скорость точки, совершающей гармонические колебания, равна 10 см/с, максимальное ускорение 100 см/с². Найти циклическую частоту колебаний, их период и амплитуду. Написать уравнение колебаний, приняв начальную фазу равной 0.
- 14. Написать уравнение гармонического колебания, если амплитуда его 10 см, максимальная скорость 50 см/с, начальная фаза 15°. Определить период колебания и смещение колеблющейся точки через 0,2 с от начала колебания.

- 15. Определите скорость движения космической ракеты, если релятивистское сокращение её длины составило 36%.
- 16. Определите скорость частицы, если её полная энергия в 2,5 раза больше её энергии покоя.
- 17. Ракета удаляется от Земли со скоростью равной 0,9 скорости света. Какое расстояние пройдет ракета в системе отсчета связанной с Землей за одну секунду измеренную по часам пассажира ракеты?
- 18. Найдите массу объекта, энергия покоя которого равна полной энергии протона, движущегося со скоростью 0,75 скорости света.
- 19. Определите расстояние которое успеет преодолеть нестабильная частица, летящая со скоростью равной 0,95 скорости света. Собственное время жизни частицы 4,5 мкс.
- 20. Найдите кинетическую энергию протона, релятивистский импульс которого равен 2*10⁻¹⁸ кг*м/с.
- 21. Воздух при нормальном давлении и температуре 300 К находится в сосуде емкостью 8,3 литра. В сосуд наливают 3,6 грамма воды и закрывают крышкой. Определите давление в сосуде при температуре 400 К.
- 22. Гелий под давлением 1 МПа и при температуре 27°C находится в баллоне объемом 10 литров. После того как из баллона было взято 10 грамм гелия, температура в баллоне понизилась до 290 К. Определите давление гелия, оставшегося в баллоне.
- 23. Два килограмма азота изобарически охлаждают от 400 К до 300 К. Определите изменение внутренней энергии, внешнюю работу и количество выделившейся теплоты.
- 24. Кислород массой 6 грамм находится под давлением 100 кПа при температуре 17 °C. После нагревания при постоянном давлении газ занял объем 10 литров. Определите изменение внутренней энергии и количество теплоты, полученной газом.
- 25. Баллон объёмом V=20 л заполнен азотом. Температура T азота равняется 400 К. Когда часть азота израсходовали, давление в баллоне уменьшилось на Δp =200 кПа. Определить массу m израсходованного азота. Процесс считать изотермическим.
- 26. Азот массой m=5 г, нагретый на $\Delta T=150$ K, сохранил неизменный объем V. Найти: 1) количество теплоты Q, сообщенное газу, 2) изменение ΔU внутренней энергии газа, 3) работу A, совершенную газом.
- 27. Два сосуда одинакового объёма содержат кислород. В одном сосуде давление p_1 =2 МПа и температура T_1 =800 K, в другом p_2 =2,5 МПа, T_2 =200 K. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры T=200 K. Определить установившееся в сосудах давление.
- 28. Азот массой m=200 г расширяется изотермически при температуре T=280 K, причем объем газа увеличивается в два раза. Найти: 1) изменение ΔU внутренней энергии газа, 2) совершенную при расширении газа работу A, 3) количество теплоты Q, полученное газом.
- 29. Определите изменение энтропии при переходе 7 г азота от объема в 5 л при температуре 80° С к объему в 20 л при температуре 300° С.
- 30. Водород массой 6,6 г расширяется изобарно до удвоенного объема. Найти изменение энтропии при этом расширении.
- 31. В вершинах равностороннего треугольника со стороной 20 см. расположены три одинаковых положительных заряда, значение каждого из них 1 нКл. Равнодействующая сил, действующих на четвертый заряд, помещенный на середине одной из сторон треугольника, равна 0,6 мкН. Определить этот заряд, напряженность и потенциал поля в точке его расположения.
- 32. Заряд 1 нКл переносится из бесконечности в точку, находящуюся на расстоянии 1 см от поверхности заряженного шара радиусом 9 см. Поверхностная плотность заряда шара 10⁻⁴ Кл/м². определить совершаемую при этом работу. Какая работа совершается на последних 10 см пути?
- 33. Два равных отрицательных заряда по 9 нКл находятся в воде ($\varepsilon = 81$) на расстоянии 8см. друг от друга. Определить напряженность и потенциал поля в точке, расположенной на расстоянии 5 см от зарядов.
- 34. Электрон с энергией W = 400 эВ (в бесконечности) движется вдоль силовой линии по направлению к поверхности металлической заряженной сферы радиусом R= 10 см. Определить минимальное расстояние, на которое приблизится электрон к поверхности сферы, если заряд ее q = -10 нКл.
- 35. Электрон вылетает из точки, потенциал которой 450B, со скоростью 190м/с. Какую скорость он будет иметь в точке с потенциалом 475B?
- 36. Определить ускоряющую разность потенциалов, которую должен пройти в электрическом поле электрон, обладающий скоростью v_1 = 10^6 м/с, чтобы его скорость возросла в 2 раза.
- 37. Батарея из трех последовательно соединенных конденсаторов C_1 = 1мкФ, C_2 =2мкФ, C_3 =4мкФ подсоединена к источнику ЭДС. Заряд батареи конденсаторов q = 40мкКл. Определить напряжения U_1 , U_2 , U_3 на каждом конденсаторе и ЭДС источника.

- 38. Батарея из трех последовательно соединенных конденсаторов C_1 = 1мк Φ , C_2 =2мк Φ , C_3 =4мк Φ подсоединена к источнику ЭДС. Заряд батареи конденсаторов q = 40мкKл. Определить емкость батареи конденсаторов.
- 39. Сила тока в проводнике равномерно растет от I_0 =0A до I_{max} =3A за 6 секунд. Определите заряд, прошедший по проводнику.
- 40. Сила тока в проводнике сопротивлением R=50 Ом равномерно возрастает от $I_o=0$ до $I_{max}=3$ А за время $\tau=6$ с. Определить выделившееся в проводнике за это время количество теплоты.
- 41. Определить внутреннее сопротивление r источника тока, если во внешней цепи при силе тока $I_1 = 4$ А развивается мощность $P_1 = 10$ BT, а при силе тока $I_2 = 6$ A $P_2 = 12$ BT.
- 42. Определить плотность ј электрического тока в медном проводе (удельное сопротивление меди $\rho = 17*10^{-9}$ Ом м), если удельная тепловая мощность тока w = 1,7 Вт/м³.

2 семестр

- 1. В однородное магнитное поле с индукцией B=0,1 Тл помещена квадратная рамка с площадью S=25 см². Нормаль к плоскости рамки составляет с направлением магнитного поля угол 60°. Определить вращающий момент, действующий на рамку, если по ней течет ток 1А.
- 2. В однородном магнитном поле с индукцией B=0,1 Тл находится круглая рамка радиусом r =0,05 м. Плоскость рамки совпадает с направлением линий магнитной индукции. Определить вращающий момент, действующий на рамку, если по ней течет ток 1A.
- 3. По двум бесконечно длинным прямым параллельным проводам текут токи I_1 =40A и I_2 =80A одинакового направления. Расстояние между проводами 0,2 м. Определить индукцию В поля, создаваемого токами в точке, лежащей на прямой соединяющей оба провода, находящейся на расстоянии r_1 =0,1 м левее левого провода.
- 4. По двум бесконечно длинным прямым параллельным проводам текут токи I_1 =40A и I_2 =80A одинакового направления. Расстояние между проводами 0,2 м. Определить индукцию В поля, создаваемого токами в точке удаленной от первого проводника на r_1 =12 см и от второго проводника на r_2 =16 см.
- 5. Определить магнитную индукцию в центре кругового проволочного витка с радиусом $R=0,1\,$ м, по которому течет ток $I=1\,$ A.
- 6. По двум параллельным проводникам длиной 1=2 м каждый, находящимся в вакууме на расстоянии d=10 см друг от друга, в противоположных направлениях текут токи $I_1=50$ А и $I_2=100$ А. Определить силу взаимодействия токов.
- 7. В однородном магнитном поле с индукцией B=0,2 Тл находится прямой проводник длиной l=0,15 м, по которому течёт ток I=5A. На проводник действует сила F=0,13 Н. Определить угол α между направлениями тока и вектором магнитной индукции.
- 8. Между полюсами электромагнита создается однородное магнитное поле с индукцией B=0,1 Тл. По проводу длиной l=70 см. помещенному перпендикулярно к направлению магнитного поля течет ток I=70A. Найти силу, действующую на провод.
- 9. Электрон, ускоренный разностью потенциалов U=0.5 кВ, движется параллельно прямолинейному длинному проводнику на расстоянии r=1 см от него. Определить силу, действующую на электрон, если через проводник пропустить ток I=1 А.
- 10. Протон, ускоренный разностью потенциалов U=0.5 кB, влетая в однородное магнитное поле с магнитной индукцией B=2 мТл, движется по окружности. Определить радиус этой окружности.
- 11. Протон, ускоренный разностью потенциалов U=1 MB, влетает в однородное магнитное поле B=1,5 мТл. Скорость каждой частицы направлена перпендикулярно к направлению магнитного поля. Найти силу действующую на каждую частицу.
- 12. В однородном магнитном поле B=0,1 Тл помещена квадратная рамка, плоскость которой составляет с направлением магнитного поля угол α =45°. Сторона рамки а=4см. найти магнитный поток Φ пронизывающий рамку.
- 13. Прямоугольная рамка вращается в однородном магнитном поле с частотой 12 Гц. Максимальная величина ЭДС, индуцируемая в рамке, составляет 1.5 В. Определить величину максимального магнитного потока, пронизывающего рамку.
- 14. При скорости изменения силы тока в соленоиде равной 25 А/с, ЭДС самоиндукции оказалась равной 75 мВ. Чему равна индуктивность соленоида?
- 15. Источник тока замкнули на катушку с сопротивлением 10 Ом и индуктивностью 0.5 Гн. Через какой промежуток времени сила тока замыкания достигнет 0.7 предельного значения?
- 16. По замкнутой электрической цепи с сопротивление 25 Ом течет ток. Через 5 мс после размыкания цепи сила тока уменьшилась в 8 раз. Определить индуктивность цепи.

- 17. Индуктивность соленоида равна 0.4 мГн. При какой силе тока энергия магнитного поля в соленоиде будет равна 160 мДж?
- 18. Сила тока в обмотке соленоида, содержащей 1000 витков, равна 3 А. Магнитный поток через поперечное сечение соленоида составляет 0.15 мВб. Определить энергию магнитного поля в соленоиде.
- 19. Найти разность фаз $\Delta \varphi$ колебаний двух точек, лежащих на луче и отстоящих на расстоянии 1=2 м друг от друга, если длина волны $\lambda = 1$ м.
- 20. На мыльную пленку падает белый свет под углом α=45° к поверхности пленки. При какой наименьшей толщине hmin пленки отраженные лучи будут окрашены в желтый цвет (λ =600 нм)? Показатель преломления мыльной воды n=1,33.
- 21. На пленку толщиной d=367 нм падает под углом ϕ =30° параллельный пучок белого света. Показатель преломления пленки п=1,4. В какой цвет будет окрашен свет отраженный пленкой?
- 22. Сферическая волна распространяющаяся из точечного монохроматического источника света (λ=640 нм) встречает на своем пути диафрагму с круглым отверстием радиуса r =0,4 мм. Расстояние от источника до экрана равно 1м. определите расстояние от отверстия до точки экрана, где наблюдается максимум освещенности.
- 23. Свет от монохроматического источника ($\lambda = 0.6$ мкм) падает нормально на диафрагму с круглым отверстием. Диаметр отверстия 6 мм. За диафрагмой на расстоянии 3м от нее находится экран. Определите, сколько зон Френеля укладывается в отверстии диафрагмы?
- 24. Свет с длиной волны λ=535 нм падает нормально на прозрачную дифракционную решетку. Найти её период, если один из фраунгоферовых максимумов возникает под углом дифракции $\phi = 35^{\circ}$.
- 25. На узкую щель падает нормально монохроматический свет. Угол отклонения пучков света, соответствующих второй светлой дифракционной полосе, равен 1°. Скольким длинам волн падающего света равна ширина щели?
- 26. Абсолютно черное тело было нагрето от температуры 100°C до 300°C. Найти, во сколько раз при этом изменилась мощность суммарного излучения тела.
- 27. Свет с длинной волны 0,5 мкм нормально падает на зеркальную поверхность и производит на неё давление 4 мкПа. Определить число фотонов, ежесекундно падающих на 1см 2 этой поверхности.
- 28. Максимум энергии излучения абсолютно черного тела приходится на длину волны 450 нм. Определить температуру и энергетическую светимость тела.
- 29. Красная граница фотоэффекта для никеля равна 0,257 мкм. Найти длину волны света, падающего на никелевый электрод, если фототок прекращается при задерживающей разности потенциалов, равной 1,5 B.
- 30. Волновая функция, описывающая основное состояние электрона в атоме водорода, имеет вид ψ(r)=Ae-r/a. Определите нормировочный коэффициент A и среднее значение модуля кулоновской силы, действующей на электрон.
- 31. Волновая функция основного состояния частицы в одномерном потенциальном поле $U(x) = \frac{m\omega_0^2 x^2}{2}$,

обыновая функция основного состояния частицы в одномерном потенциальном поле
$$C(x) = \frac{1}{2}$$
, где $\omega_0 = \sqrt{\frac{1}{2}}$ толожительная постоянная. Используя 2η

уравнение Шредингера, определите энергию частицы в этом состоянии.

- 32. Определите, во сколько раз орбитальный момент импульса электрона, находящегося в f-состоянии, больше, чем для электрона в р – состоянии.
- 33. Электрон в атоме находится в d-состоянии. Определите орбитальный момент импульса электрона и максимальное значение проекции момента импульса на направление внешнего магнитного поля.
- 34. Определить возможные значения магнитного момента обусловленного орбитальным движением электрона в возбужденном атоме водорода, если энергия возбуждения рана 12,09 эВ.
- 35. Используя принцип Паули указать какое максимальное число электронов в атоме могут иметь одинаковыми следующие квантовые числа 1) n, l, m, m_s; 2) n, l.
- 36. В ядре изотопа углерода $^{^{14}}_{~6}C$ один из нейтронов превратился в протон в результате $^{-}\beta$ -распада. Какое ядро получилось в результате такого превращения.
- 37. Определите период полураспада радиоактивного изотопа, если 3/8 начального количества ядер этого изотопа распалось за 407 секунд.
- 38. Радиоактивный изотоп урана $^{233}_{92}U$ претерпевает шесть α и три $^-\beta$ -распадов. Определите конечный продукт деления и представьте общую схему распада.

Критерии оценки:

Наименование: защита лабораторных работ

Представление в ФОС: задания и/или вопросы для защиты лабораторных работ

Варианты заданий:

ЛР 1: Проверка основного закона динамики вращательного движения

- 1. Дайте понятие углового пути и углового перемещения.
- 2. Дайте определение угловой скорости, углового ускорения. Как угловые характеристики связаны с линейными? Как направлены вектора углового перемещения, угловой скорости и углового ускорения?
- 3. Дайте определение момента силы и момента импульса относительно точки вращения, относительно оси вращения. Каково их направление?
- 4. Дайте определение момента инерции материальной точки, твердого тела. Каков физический смысл момента инерции тела?
- 5. Выведите и сформулируйте основной закон динамики вращательного движения.
- 6. Выведите расчетную формулу для момента инерции маятника Обербека.
- 7. Объясните, почему при возрастании массы падающего груза время вращения маятника уменьшается.
- 8. Как изменится момент инерции маятника Обербека, если грузы передвинуть ближе к оси вращения, дальше от оси вращения?

ЛР 2: Изучение движения маятника Максвелла

- 1. Дать определение векторов угловой скорости, углового ускорения и сформулировать как они направлены.
- 2. Как связаны вектора линейного и углового ускорений точки вращающегося тела.
- 3. Сформулировать понятие момента инерции твердого тела относительно неподвижной оси вращения. В чем заключается его физический смысл?
- 4. Записать и сформулировать основное уравнение вращательного движения твердого тела вокруг неподвижной оси.
- 5. Сформулировать закон сохранения момента импульса.
- 6. Рассмотреть аналогию между поступательным и вращательным движениями.
- 7. По выбору преподавателя вывести выражение для момента инерции обруча, диска, стержня и шара относительно соответствующих осей вращения.
- 8. Изложить устройство и принцип работы экспериментальной установки.
- 9. Проанализировать процесс колебательного движения в случае маятника Максвелла.
- 10. Вывести рабочую формулу для экспериментального значения момента инерции маятника Максвел-
- 11. Записать и прокомментировать формулу для теоретического значения момента инерции маятника Максвелла.
- 12. Вывести рабочую формулу для момента инерции накладных колец.

ЛР 3: Определение показателя адиабаты воздуха методом Клемана-Дезорма

- 1. Сформулировать в чем состоит модель идеального газа.
- 2. Назовите и охарактеризуйте изопроцессы в газах.
- 3. В чем заключается адиабатный процесс? Охарактеризуйте возможные варианты его реализации.
- 4. Сформулируйте что такое теплоемкость, в том числе, что такое удельная и молярная теплоемкость.
- 5. Запишите первое начало термодинамики в дифференциальной форме, сформулируйте его физический смысл.
- 6. Запишите и прокомментируйте уравнение Пуассона в трех его формах.
- 7. Что такое показатель адиабаты газа. Чем отличаются графики изотермы и адиабаты?
- 8. Выведите уравнение Майера.
- 9. Запишите чему равна универсальная газовая постоянная. Сформулируйте ее физический смысл.
- 10. Сформулируйте что такое число степеней свободы молекулы. Каково число степеней свободы для одно, -двух и -трех атомной молекулы, где атомы жестко связаны между собой?
- 11. Запишите чему равна постоянная Больцмана. Сформулируйте ее физический смысл.
- 12. Как выражается показатель адиабаты газа через число степеней свободы?
- 13. Изложить устройство экспериментальной установки и порядок выполнения работы.
- 14. Изобразить диаграмму рассматриваемого в эксперименте процесса и прокомментировать ее.
- 15. Вывести рабочую формулу.
- **ЛР 4:** Определение удельной теплоемкости металлов методом охлаждения

- 1. Какие тела являются аморфными, а какие кристаллическими?
- 2. Сформулируйте, что такое теплоемкость, в том числе, что такое удельная и молярная теплоемкость.
- 3. Как связаны удельная и молярная теплоемкости между собой?
- 4. Сформулируйте, что понимается под числом степеней свободы молекулы. Каково число степеней свободы для одно, двух и трех атомной молекулы, для случая, когда атомы жестко связаны между собой?
- 5. Запишите формулу, по которой можно рассчитать полную энергию колебательного движения одного атома и всех атомов, находящихся в одном моле твердого тела.
- 6. Одинаковой ли является разность температур между нагретым телом и окружающей средой в градусах Цельсия и Кельвина?
- 7. Сформулируйте закон Дюлонга и Пти. Прокомментируйте область его применимости.
- 8. Какую температуру называют характеристической температурой Дебая?
- 9. Запишите закон охлаждения Ньютона-Рихмана.
- 10. В чем заключается метод определения удельной теплоемкости с использованием кривых охлаждения?
- 11. Какой график называют кривой охлаждения?
- 12. Выведите рабочую формулу (19).
- 13. Какой вид имеют кривые охлаждения в полулогарифмическом масштабе?
- 14. Изложите устройство экспериментальной установки и порядок выполнения работы.
- 15. Изложите устройство и принцип работы термопары.
- 16. Какое физическое явление положено в основу работы термопары?
- 17. Изложите в чем заключается эффект Пельтье.

ЛР 5: Определение относительной диэлектрической проницаемости материалов

- 1. Диэлектрики, их виды.
- 2. Поляризация диэлектриков, виды поляризации.
- 3. Поле внутри диэлектрика.
- 4. Поле на границе раздела двух диэлектриков.
- 5. Раскрыть смысл диэлектрической проницаемости среды.

ЛР 6: Изучение цепи переменного тока

- 1. Какой ток называется переменным?
- 2. Дайте определение мгновенного, амплитудного и действующего значений переменного тока. Какая связь между ними?
- 3. Нарисуйте и объясните векторную диаграмму для цепи переменного тока с последовательно включенными резистором, катушкой индуктивности и конденсатором.
- 4. В последовательной R-L-C цепи напряжение на активном элементе меняется по закону $U_{\it R}=U_{\it m}\sin\omega t$. Запишите законы изменения тока и напряжений на реактивных элементах.
- 5. В последовательной R-L-C цепи индуктивное сопротивление больше емкостного. Как изменится ток в цепи, если частота питающего напряжения увеличится?
- 6. Запишите закон Ома для последовательной R-L-C цепи переменного тока в действующих значениях напряжений и токов.
- 7. Что называется реактивным сопротивлением цепи, от чего оно зависит?
- 8. Чем вызван сдвиг по фазе между током и приложенным напряжением в цепи переменного тока? От чего он зависит?
- 9. В чем заключается различие формул закона Ома для цепей постоянного и переменного токов? Чем оно вызвано?
- 10. Как вычислить мощность, выделяемую в цепи переменного тока?
- 11. Что называется коэффициентом мощности?
- ЛР 7: Определение удельного заряда электрона методом магнетрона
- 1. Какие силы действуют на движущийся заряд в электрическом и магнитном полях?
- 2. Что такое сила Лоренца? Чему она равна?
- 3. Чем определяется траектория движения заряженной частицы в электромагнитном поле?
- 4. Какова траектория заряженной частицы, движущейся в однородном магнитном поле, если: вектор ее скорости перпендикулярен вектору индукции магнитного поля? составляет с вектором индукции угол, отличный от прямого?
- 5. Может ли измениться кинетическая энергия частицы, движущейся в магнитном поле, если другие поля отсутствуют?
- 6. Что такое магнетрон?

- 7. В чем заключается сущность метода магнетрона по определению удельного заряда электрона?
- 8. Как движутся электроны в магнетроне в отсутствии магнитного поля?
- 9. Чему равна скорость электронов, достигших анода?
- 10. Как зависит радиус кривизны траектории электронов от величины индукции магнитного поля?
- 11. Какое значение индукции магнитного поля называется критическим?
- 12. Как зависит анодный ток магнетрона от индукции магнитного поля вблизи критического значения?
- 13. Как направлено магнитное поле в магнетроне относительно пилиндрических электролов вакуумного диода? Как направлено электрическое поле относительно магнитного?
- 14. Почему в окрестности критического значения тока соленоида анодный ток спадает не сразу, а посте-
- 15. Чему равно табличное значение удельного заряда электрона?

ЛР 8:Изучение сложения гармонических колебаний.

- 1. Гармонические колебания. Их характеристики.
- 2. Как производится сложение одинаково направленных колебаний с одинаковой частотой? Дайте пояснение по использованию метода векторных диаграмм.
- 3. Что такое биение? От чего зависит частота и амплитуда биений?
- 4. Как найти траекторию движения частицы, совершающей одновременно взаимно перпендикулярные колебания?
- 5. Что такое фигуры Лиссажу?

ЛР 9: Изучение явления интерференции света в тонких пленках на примере колец Ньютона

- 1. Что такое интерференция света?
- 2. Каковы условия максимума и минимума интерференционной картины?
- 3. Чем отличаются геометрическая и оптическая разность хода двух лучей?
- 4. Что такое когерентные волны?
- 5. Дать определение тонкой пленки?
- 6. Как найти цену деления шкалы окуляра микроскопа?
- 7. Почему кольца Ньютона в белом свете радужно окрашены?

ЛР 10: Изучение явления поляризации света. Проверка закона Малюса

- 1. Приведите уравнение плоской монохроматической волны в действительной и комплексной форме, прокомментируйте их.
- 2. Как ориентированы в световой волне друг относительно друга вектора E, H, N?
- 3. Дать определение поляризации света. Вывести уравнение эллипса поляризации.
- 4. От какого параметра зависит форма эллипса поляризации, и какие состояния поляризации при этом
- E, H
- 7. Что такое плоскость колебаний, плоскость поляризации?
- 8. Почему обычные источники испускают неполяризованный свет?
- 9. Что такое поляризаторы? Что такое несовершенный поляризатор?
- 10. Что такое частично-поляризованный свет, чем он отличается от естественного?
- 11. Что такое степень поляризации?
- 12. Рассказать об основных методах получения линейно-поляризованного света.
- 13. Что такое разрешенное направление поляризатора? Что такое интенсивность фона?
- 14. Вывести формулу закона Малюса.

ЛР 11: Изучение законов внешнего фотоэффекта

- 1. В чем заключается явление внешнего фотоэффекта?
- 2. Сформулируйте законы внешнего фотоэффекта.
- 3. Нарисуйте и объясните вольтамперную характеристику фотоэлемента.
- 4. Что называется задерживающей разностью потенциалов? От чего она зависит?
- 5. Что такое ток насыщения и как он связан с числом испущенных электронов?
- 6. Объясните формулу Эйнштейна для фотоэффекта.
- 7. В чем противоречия между классической волновой теорией света и законами фотоэффекта?
- 8. Объясните физический смысл работы выхода и красной границы фотоэффекта?
- 9. Что называют интегральной чувствительностью фотоэлемента? Объясните методику ее определения в данной работе.

ЛР 12: Исследование температурной зависимости сопротивления металла и полупроводника

- 1. Что такое удельная электропроводность и отчего она зависит для металлов и полупроводников?
- 2. В чем заключается физический смысл подвижности носителей заряда? Что и как на нее влияет?
- 3. Объясните зонную структуру металлов, полупроводников и диэлектриков.
- 4. Объясните с точки зрения зонной теории температурную зависимость электропроводности собственных полупроводников и металлов.
- 5. Что такое энергия активации собственных полупроводников? Как она определяется экспериментально?
- 6. Что такое уровень и энергия Ферми?
- 7. Как определяется температурный коэффициент сопротивления металла?

Критерии оценки:

Приведены в разделе 2

Наименование: коллоквиум

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения коллоквиумов

Коллоквиум №1

- 1. Кинематика материальной точки. Системы отсчета. Перемещение и скорость. Нормальное, тангенциальное, и полное ускорение.
- 2. Закон инерции. Инерциальные и неинерциальные системы отсчета. Физическое содержание понятий массы, силы, импульса, импульса силы. 2-ой закон Ньютона.
- 3. 3-ий закон Ньютона. Внешние и внутренние силы. Закон сохранения импульса для замкнутой системы тел. Понятие центра масс и закон его движения.
- 4. Вращательное движение и его кинематические характеристики: угловое перемещение, угловая скорость и угловое ускорение. Связь угловых характеристик с линейными.
- 5. Динамические характеристики вращательного движения: момент силы, момент импульса, момент инерции. Вычисление моментов инерции тел правильной формы. Теорема Штейнера.
- 6. Основной закон динамики вращательного движения. Закон сохранения момента импульса.
- 7. Понятие энергии, работы и мощности. Кинетическая энергия механической системы. Работа переменной силы.
- 8. Кинетическая энергия и работа во вращательном движении.
- 9. Понятие потенциального поля. Потенциальная энергия материальной точки во внешнем силовом поле и её связь с силой, действующей на материальную точку.
- 10. Закон сохранения энергии в механике, консервативные и неконсервативные силы. Применение законов сохранения к упругому и неупругому ударам.
- 11. Преобразования Галилея. Механический принцип относительности. Теорема сложения скоростей.
- 12. Постулаты специальной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.

Коллоквиум №2

- 1. Масса, импульс и основной закон динамики в релятивистской механике. Взаимосвязь массы и энергии. Кинетическая энергия в релятивистской механике.
- 2. Колебательное движение. Гармоническое колебание и его характеристики. Скорость и ускорение при гармонических колебаниях.
- 3. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
- 4. Сложение взаимно-перпендикулярных колебаний.
- 5. Динамика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники.
- 6. Затухающие колебания. Дифференциальное уравнение затухающих колебаний, его решение и анализ.
- 7. Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний, его решение и анализ. Явление резонанса.
- 8. Молекулярная физика и термодинамика, их объекты и методы исследования. Термодинамическая система, её параметры и состояние. Термодинамический процесс и его виды.
- 9. Модель идеального газа. Вывод основного уравнения молекулярно кинетической теории и следствия из него. Молекулярно кинетическое толкование абсолютной температуры.

- 10. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- 11. Закон Максвелла для распределения молекул по скоростям и энергиям теплового движения. Понятие средней арифметической, средней квадратичной и наиболее вероятной скоростях.
- 12. Вывод барометрической формулы и её анализ. Распределение Больцмана для частиц во внешнем потенциальном поле.

Коллоквиум №3

- 1. Магнитное поле в вакууме. Контур с током в магнитном поле. Вектор магнитной индукции. Силовые линии магнитного поля. Закон Ампера.
- 2. Закон Био-Савара-Лапласа. И его применение к вычислению магнитных полей прямолинейного проводника с током и кругового тока.
- 3. Теорема о циркуляции вектора магнитной индукции (закон полного тока). Вихревой характер магнитного поля. Применение теоремы о циркуляции к расчету магнитного поля соленоида.
- 4. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.
- 5. Работа при перемещении проводника с током в постоянном магнитном поле.
- 6. Движение заряженных частиц в магнитном поле. Сила Лоренца. Ускорители заряженных частиц.
- 7. Эффект Холла и его применение.
- 8. Явление электромагнитной индукции. Правило Ленца. Закон Фарадея-Ленца (основной закон электромагнитной индукции) и его вывод из электронных представлений.
- 9. Явление самоиндукции. Индуктивность. Электродвижущая сила самоиндукции. Индуктивность соленоида.
- 10. Токи при размыкании и замыкании цепи.
- 11. Энергия магнитного поля.
- 12. Магнитное поле в веществе. Магнитные моменты электронов и атомов. Классификация материалов по магнитным свойствам. Диамагнетики. Парамагнетики.
- 13. Описание магнитного поля в веществе. Вектор намагниченности. Теорема о циркуляции вектора напряженности магнитного поля.
- 14. Ферромагнетики и их свойства. Доменная природа ферромагнетизма.

Коллоквиум №4

- 1. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса.
- 2. Система уравнений Максвелла в интегральной и дифференциальной формах. Следствия из уравнений Максвелла.
- 3. Электромагнитные волны и их свойства. Дифференциальное уравнение электромагнитной волны. Энергия волн. Поток энергии. Вектор Умова-Пойнтинга.
- 4. Световая волна. Интерференция света. Когерентность (временная и пространственная) и монохроматичность световых волн. Условия максимума и минимума интенсивности при интерференпии.
- 5. Способы получения когерентных волн. Интерференция света в тонких пленках.
- 6. Понятие дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- 7. Дифракция Фраунгофера на одной щели.
- 8. Дифракция Фраунгофера на дифракционной решетке.
- 9. Разрешающая способность оптических приборов.
- 10. Дисперсия света. Области нормальной и аномальной дисперсии. Электронная теория дисперсии.
- 11. Понятие о поляризации света, виды поляризации. Способы получения поляризованного света.
- 12. Тепловое излучение. Основные характеристики теплового излучения. Законы теплового излучения: Кирхгофа, Стефана-Больцмана, Вина. Абсолютно черное тело.
- 13. Квантовая гипотеза и формула Планка. Связь формулы Планка с классическими законами теплового излучения. Понятие об оптической пирометрии.
- 14. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения. Внешний фотоэффект. Давление света. Эффект Комптона и его теория.

Критерии оценки:

Приведены в разделе 2

Наименование: конспектирование лекций

Представление в ФОС: перечень вопросов для самостоятельной работы студентов (СРС)

Перечень вопросов для СРС:

1 семестр

- 1. Колебательное движение. Гармоническое колебание и его характеристики. Скорость и ускорение при гармонических колебаниях.
- 2. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
- 3. Сложение взаимно перпендикулярных колебаний.
- 4. Динамика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятники.
- 5. Затухающие колебания. Дифференциальное уравнение затухающих колебаний, его решение и анализ.
- 6. Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний, его решение и анализ. Явление резонанса.
- 7. Волновые процессы. Механизм образования волн в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны. Величины, характеризующие волну.
- 8. Образование стоячих волн. Уравнение стоячей волны и его анализ.
- 9. Молекулярная физика и термодинамика, их объекты и методы исследования. Термодинамическая система: её параметры и состояние. Термодинамический процесс и его виды.
- 10. Модель идеального газа. Вывод основного уравнения молекулярно-кинетической теории и следствия из него. Молекулярно-кинетическое толкование абсолютной температуры.
- 11. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- 12. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения. Понятие о средней арифметической, средней квадратичной и наиболее вероятной скоростях.
- 13. Вывод барометрической формулы и её анализ. Распределение Больцмана для частиц во внешнем потенциальном поле.
- 14. Среднее число столкновений и средняя длина свободного пробега молекул. Явление переноса в термодинамически неравновесных системах: диффузия, теплопроводность, внутреннее трение.
- 15. Понятие о внутренней энергии как функции состояния. Теплота и работа как форма передачи энергии. Первое начало термодинамики.
- 16. Применение первого начала термодинамики к изопроцессам. Работа и теплоёмкость в изопроцессах.
- 17. Адиабатный процесс, уравнение Пуассона. Работа и теплоёмкость.
- 18. Обратимые и необратимые процессы. Понятие цикла. Цикл Карно и его КПД для идеального газа. Тепловая и холодильная машины.
- 19. Энтропия. Второе начало термодинамики и его статическая интерпретация. Критика идеалистического толкования второго начала термодинамики.
- 20. Реальные газы. Силы молекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа.
- 21. Сравнение изотерм Ван-дер-Ваальса с экспериментальными. Критическое состояние вещества. Понятие о фазовых переходах.
- 22. Основные положения классической электронной теории электропроводности металлов. Вывод закона Ома и Джоуля-Ленца в дифференциальной форме из электронных представлений. Работа выхода, контактная разность потенциалов, явление Зеебека и Пелтье.

2 семестр

- 1. Описание магнитного поля в веществе. Классификация материалов по магнитным свойствам.
- 2. Диамагнетики. Элементарная теория диамагнетизма.
- 3. Парамагнетики. Классическая теория Ланжевена. Намагниченность. Обобщение закона полного тока.
- 4. Ферромагнетики, их основные свойства. Доменная природа ферромагнетизма.
- 5. Свободные незатухающие и затухающие электромагнитные колебания в колебательном контуре. Дифференциальное уравнение затухающих колебаний, его решение и анализ.
- 6. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса.
- 7. Электромагнитные волны и их свойства. Дифференциальное уравнение электромагнитной волны. Энергия волн. Поток энергии. Вектор Умова-Пойтинга.
- 8. Световая волна. Интерференция света. Когерентность (временная и пространственная) и монохроматичность световых волн. Условия макс. И мин. Интенсивности при интерференции.
- 9. Способы получения когерентных волн. Интерференция света в тонких пленках. Применение интерференции: интерферометры, просветление оптики.

- 10. Понятие о дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- 11. Дифракция Фраунгофера на дифракционной решетке.
- 12. Дифракция Фраунгофера на одной щели.
- 13. Разрешающая способность оптических приборов.
- 14. Понятие о голографии.
- 15. Дисперсия света. Области нормальной и аномальной дисперсии. Электронная теория дисперсии.
- 16. Понятие о поляризации света, виды поляризации. Способы получения поляризованного света.
- 17. Искусственная оптическая анизотропия, ее объяснение и применение.
- 18. Тепловое излучение. Основные характеристики теплового излучения. Законы теплового излучения: Кирхгофа, Стефана-Больцмана, Вина. Абсолютно черное тело.
- 19. Квантовая гипотеза и формула Планка. Связь формулы Планка с классическими законами теплового излучения. Понятие об оптической пирометрии.
- 20. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения. Внешний фотоэффект. Давление света. Эффект Комптона и его теория.
- 21. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы де Бройля.
- 22. Соотношение неопределенностей как проявление корпускулярно-волнового дуализма. Принцип причинности в квантовой механике. Ограниченность механического детерминизма.
- 23. Волновая функция и ее статистический смысл. Общее уравнение Шредингера. Стационарное состояние. Уравнение Шредингера для стационарных состояний.
- 24. Частица в одномерной бесконечно глубокой потенциальной яме. Волновые функции, квантование энергии.
- 25. Прохождение частицы через потенциальный барьер. Туннельный эффект.
- 26. Линейный гармонический осциллятор в квантовой механике.
- 27. Развитие представлений о строении атома. Модель атома Резерфорда-Бора.
- 28. Атом водорода в квантовой механике. Квантовые числа их физический смысл. Спин электрона, спиновое квантовое число.
- 29. Принцип Паули. Распределение электронов в атоме по состояниям.
- 30. Понятие об энергетических уровнях молекул. Спектры молекул.
- 31. Спонтанное и вынужденное излучение. Лазеры и их применение.
- 32. Понятие о квантовых статистиках. Фазовое пространство. Элементарная ячейка. Плотность состояний. Распределение частиц по состояниям (Бозе-Эйнштейна, Ферми-Дирака).
- 33. Теплоемкость кристаллической решетки. Закон Дюлонта-Пти. Квантовая теория теплоемкости.
- 34. Квантовая теория свободных электронов в металле. Распределение свободных электронов по энергиям в зависимости от температуры. Распределение Ферми-Дирака. Внутренняя энергия и теплоемкость электронного газа в металле.
- 35. Электропроводность металлов. Сверхпроводимость.
- 36. Расщепление энергетических уровней изолированных атомов и возникновение энергетических зон при образовании кристаллической решетки. Деление материалов на металлы, полупроводники и диэлектрики.
- 37. Полупроводники, их собственная я примесная проводимость. Температурная зависимость проводимости полупроводников.
- 38. Понятие о р-п-переходе свойства р-п-перехода и его вольтамперная характеристика. Диоды.
- 39. Фотоэлектрические явления в полупроводниках.
- 40. Состав и характеристики ядра Размер ядер. Свойства и природа ядерных сил.
- 41. Дефект массы и энергии связи ядра.
- 42. Закономерности и происхождение альфа-, бета-, гамма- излучений атомных ядер. Закон радиоактивного распада.

Критерии оценки:

Приведены в разделе 2

Наименование: экзамен

Представление в ФОС: перечень вопросов

Перечень вопросов для проведения экзамена:

1. Введение: предмет физики и ее связь с другими дисциплинами. Методы физических исследований (опыт, гипотеза, эксперимент, теория). Взаимосвязь физики и техники.

- 2. Понятие пространства и времени в классической физике. Системы отсчета. перемещение и скорость. Нормальное, тангенциальное и полное ускорение.
- 3. Понятие состояния в классической механике. Основная задача динамики. Закон инерции. Инерциальные и неинерциальные системы отсчета. Физическое содержание понятий массы, силы, импульса, импульса силы, 2-й закон Ньютона. Виды взаимодействий, понятие о силах инерции.
- 4. 3-й закон Ньютона. Внешние и внутренние силы. Закон сохранения импульса для замкнутой системы тел. Понятие центра масс и закон его движения.
- 5. Понятие энергии, работы и мощности. Кинетическая энергия механической системы. Работа переменной силы.
- 6. Поле как форма материи, осуществляющая силовое взаимодействие между частицами. Понятие потенциального поля. Потенциальная энергия материальной точки во внешнем силовом поле и ее связь с силой, действующей на материальную точку (на примере гравитационного поля).
- 7. Закон сохранения энергии в механике, консервативные и неконсервативные системы.
- 8. Вращательное движение и его кинематические характеристики; угловое перемещение, угловая скорость и угловое ускорение. Связь угловых характеристик с линейными.
- 9. Динамические характеристики вращательного движения: момент силы, момент импульса, момент инерции. Вычисление моментов инерции тел правильной формы. Теорема Штейнера.
- 10. Основной закон динамики вращательного движения. Закон сохранения момента импульса.
- 11. Кинетическая энергия и работа во вращательном движении.
- 12. Колебательное движение. Гармоническое колебание и его характеристики. Скорость и ускорение при гармонических колебаниях.
- 13. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения.
- 14. Сложение взаимно-перпендикулярных колебаний.
- 15. Динамика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Пружинный, математический и физический маятник.
- 16. Затухающие колебания. Дифференциальное уравнение затухающих колебаний, его решение и анапиз
- 17. Вынужденные колебания. Дифференциальное уравнение вынужденных колебаний, его решение и анализ. Явление резонанса.
- 18. Волновые процессы. Механизм образования волн в упругой среде. Поперечные и продольные волны. Уравнение бегущей волны. Величины, характеризующие волну.
- 19. Образование стоячих волн. Уравнение стоячей волны и его анализ.
- 20. Преобразования Галилея. Механический принцип относительности. Теорема сложения скоростей.
- 21. Эволюция воззрений на свойства пространства и времени. Постулаты специальной теории относительности Эйнштейна. Преобразования Лоренца и следствия из них.
- 22. Масса, импульс и основной закон динамики в релятивистской механике. Взаимосвязь массы и энергии. Кинетическая энергия в релятивистской механике. Границы применимости классической механики
- 23. Молекулярная физика и термодинамика. Их объекты и методы исследования. Термодинамическая система; ее параметры и состояние. Термодинамический процесс и его виды.
- 24. Модель идеального газа. Вывод основного уравнения молекулярно-кинетической теории и следствия из него. Молекулярно-кинетическое толкование абсолютной температуры.
- 25. Число степеней свободы молекул. Закон равномерного распределения энергии по степеням свободы. Внутренняя энергия идеального газа.
- Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения. Понятие о средней арифметической, средней квадратичной и наиболее вероятной скоростях.
- 27. Вывод барометрической формулы и ее анализ. Распределение Больцмана для частиц во внешнем потенциальном поле.
- 28. Среднее число столкновений и средняя длина свободного пробега молекул. Явления переноса в термодинамически неравновесных системах: диффузия, теплопроводность, внутреннее трение.
- 29. Понятие о внутренней энергии как функции состояния. Теплота и работа как формы передачи энергии. Первое начало термодинамики.
- 30. Применение первого начала термодинамики к изопроцессам. Работа и теплоемкость в изопроцессах.
- 31. Адиабатный процесс, уравнение Пуассона. Работа и теплоемкость.
- 32. Обратимые и необратимые процессы. Понятие цикла. Цикл Карно и его КПД для идеального газа. Тепловая и холодильные машины.
- 33. Энтропия. Второе начало термодинамики и его статистическая интерпретация.

- 34. Реальные газы. Силы молекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Внутренняя энергия реального газа.
- 35. Сравнение изотерм Ван-дер-Ваальса с экспериментальными. Критическое состояние вещества. Понятие о фазовых переходах.
- 36. Электростатика. Закон сохранения заряда. Закон Кулона. Электростатическое поле и его напряженность. Принцип суперпозиции полей.
- 37. Поток вектора напряженности. Теорема Остроградского-Гаусса для электростатического поля в вакууме и применение её для расчета полей.
- 38. Работа сил электростатического поля при перемещении заряда. Понятие циркуляции вектора напряженности поля. Потенциальность электростатического поля.
- 39. Потенциальная энергия заряда и потенциал поля в некоторой точке. Разность потенциалов. Связь между напряженностью электрического поля и потенциалом.
- 40. Диэлектрики и их типы. Электронная и ориентационная поляризация. Вектор поляризации. Напряженность поля в диэлектрике. Диэлектрическая проницаемость среды.
- 41. Распределение зарядов в проводнике, поле внутри проводника и у его поверхности. Проводники в электростатическом поле.
- 42. Электроемкость уединенного проводника. Конденсаторы.
- 43. Энергия системы неподвижных точечных зарядов, заряженного проводника, электрического поля. Объемная плотность энергии.
- 44. Электрический ток и его характеристики: сила тока, плотность тока. Условия существования постоянного тока. Сторонние силы.
- 45. Электродвижущая сила источника тока. Напряжение.
- 46. Закон Ома для однородного участка цепи. Электрическое сопротивление, удельное сопротивление. Закон Ома для неоднородного участка цепи.
- 47. Закон Джоуля Ленца. Работа и мощность тока. КПД источника тока.

Критерии оценки:

Приведены в разделе 2

Наименование: зачет с оценкой

Представление в ФОС: перечень вопросов Перечень вопросов для проведения зачета:

- 15. Магнитное поле в вакууме. Контур с током в магнитном поле. Вектор магнитной индукции. Силовые линии магнитного поля. Закон Ампера.
- 16. Закон Био-Савара-Лапласа. И его применение к вычислению магнитных полей прямолинейного проводника с током и кругового тока.
- 17. Теорема о циркуляции вектора магнитной индукции (закон полного тока). Вихревой характер магнитного поля.
- 18. Применение теоремы о циркуляции к расчету магнитного поля соленоида.
- 19. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.
- 20. Работа при перемещении проводника с током в постоянном магнитном поле.
- 21. Движение заряженных частиц в магнитном поле. Сила Лоренца. Ускорители заряженных частиц.
- 22. Эффект Холла и его применение.
- 23. Явление электромагнитной индукции. Правило Ленца. Закон Фарадея-Ленца (основной закон электромагнитной индукции) и его вывод из электронных представлений.
- 24. Явление самоиндукции. Индуктивность. Электродвижущая сила самоиндукции. Индуктивность соленоида.
- 25. Токи при размыкании и замыкании цепи (с выводом формул).
- 26. Энергия магнитного поля.
- 27. Магнитное поле в веществе. Магнитные моменты электронов и атомов. Вектор намагниченности. Теорема о циркуляции вектора напряженности магнитного поля.
- 28. Классификация материалов по магнитным свойствам. Диамагнетики. Парамагнетики. Ферромагнетики и их свойства. Доменная природа ферромагнетизма.
- 29. Свободные незатухающие и затухающие электромагнитные колебания в колебательном контуре. Дифференциальное уравнение затухающих колебаний, его решение и анализ.
- 30. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Явление резонанса.

- 31. Система уравнений Максвелла в интегральной и дифференциальной формах. Следствия из уравнений Максвелла.
- 32. Электромагнитные волны и их свойства. Дифференциальное уравнение электромагнитной волны. Энергия волн. Поток энергии. Вектор Умова-Пойнтинга.
- 33. Световая волна. Интерференция света. Когерентность (временная и пространственная) и монохроматичность световых волн. Условия максимума и минимума интенсивности при интерференции.
- 34. Способы получения когерентных волн. Интерференция света в тонких пленках.
- 35. Понятие дифракции света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейное распространение света.
- 36. Дифракция Фраунгофера на одной щели.
- 37. Дифракция Фраунгофера на дифракционной решетке.
- 38. Разрешающая способность оптических приборов.
- 39. Дисперсия света. Области нормальной и аномальной дисперсии. Электронная теория дисперсии.
- 40. Понятие о поляризации света, виды поляризации. Способы получения поляризованного света.
- 41. Тепловое излучение. Основные характеристики теплового излучения. Законы теплового излучения: Кирхгофа, Стефана-Больцмана, Вина. Абсолютно черное тело.
- 42. Квантовая гипотеза и формула Планка. Связь формулы Планка с классическими законами теплового излучения. Понятие об оптической пирометрии.
- 43. Диалектическое единство корпускулярных и волновых свойств электромагнитного излучения. Внешний фотоэффект. Давление света. Эффект Комптона и его теория.
- 44. Развитие представлений о строении атома. Модель атома Резерфорда-Бора.
- 45. Гипотеза и формула де Бройля. Экспериментальное подтверждение гипотезы де Бройля.
- 46. Соотношение неопределенностей как проявление корпускулярно-волнового дуализма. Принцип причинности в квантовой механике. Ограниченность механического детерминизма.
- 47. Волновая функция и ее статистический смысл. Общее уравнение Шредингера. Стационарное состояние. Уравнение Шредингера для стационарных состояний.
- 48. Частица в одномерной бесконечно глубокой потенциальной яме. Волновые функции. Квантование энергии.
- 49. Прохождение частицы через потенциальный барьер. Туннельный эффект.
- 50. Линейный гармонический осциллятор в квантовой механике.
- 51. Атом водорода в квантовой механике. Квантовые числа и их физический смысл. Спин электрона, спиновое квантовое число.
- 52. Принцип Паули. Распределение электронов в атоме по состояниям.
- 53. Понятие об энергетических уровнях молекул. Спектры молекул.
- 54. Спонтанное и вынужденное излучение. Лазеры и их применение.
- 55. Понятие о квантовых статистиках. Фазовое пространство. Элементарная ячейка. Плотность состояний. Распределение частиц по состояниям (Бозе-Эйнштейна, Ферми-Дирака).
- 56. Теплоемкость кристаллической решетки. Закон Дюлонга-Пти. Квантовая теория теплоемкости.
- 57. Квантовая теория свободных электронов в металле. Распределение свободных электронов по энергиям в зависимости от температуры. Распределение Ферми-Дирака. Внутренняя энергия и теплоемкость электронного газа в металле.
- 58. Электропроводность металлов. Сверхпроводимость.
- 59. Расщепление энергетических уровней изолированных атомов и возникновение энергетических зон при образовании кристаллической решетки. Деление материалов на металлы, полупроводники и диэлектрики.
- 60. Полупроводники, их собственная и примесная проводимость. Температурная зависимость проводимости полупроводников.
- 61. Понятие о р-п-переходе и его вольтамперная характеристика. Диоды.
- 62. Фотоэлектрические явления в полупроводниках.
- 63. Описание магнитного поля в веществе. Классификация материалов по магнитным свойствам.
- 64. Диамагнетики. Элементарная теория диамагнетизма.
- 65. Парамагнетики. Классическая теория Ланжевена.
- 66. Ферромагнетики, их основные свойства. Доменная природа ферромагнетизма.
- 67. Состав и характеристика ядра.
- 68. Закономерности и происхождение альфа-, бета-, гамма-излучений атомных ядер. Закон радиоактивного распада.
- 69. Ядерные реакции и законы сохранения.

- 70. Реакция деления ядра. Понятие о ядерной энергетике.71. Реакция синтеза атомных ядер. Проблема управляемых термоядерных реакций.72. Элементарные частицы. Проблемы современной физики.

Критерии оценки: Приведены в разделе 2

2. Критерии и шкалы оценивания

Для контрольных мероприятий (текущего контроля) устанавливается минимальное и максимальное количество баллов в соответствии с таблицей. Контрольное мероприятие считается пройденным успешно при условии набора количества баллов не ниже минимального.

Результат обучения по дисциплине считается достигнутым при успешном прохождении обучающимся всех контрольных мероприятий, относящихся к данному результату обучения.

Разделы	Форма контроля	Количест	во баллов
дисциплины		min	max
	1 семестр		
1	ЛР 2: Проверка основного закона динамики вращательно-	4	6
	го движения		
2	ЛР 2: : Изучение движения маятника Максвелла	4	6
4	ЛР 3 : Определение показателя адиабаты воздуха методом	4	6
	Клемана-Дезорма		
4	ЛР 4 : Определение удельной теплоемкости металлов ме-	4	6
	тодом охлаждения		
1-3	Коллоквиум №1	11	20
4	Коллоквиум №2	11	20
1-5	Фронтальный опрос по решению домашних задач	16	26
1-5	Конспектирование лекций	6	10
	Итого за 1 семестр	60	100
	2 семестр		
5	ЛР 5: Определение относительной диэлектрической про-	4	6
	ницаемости материалов		
5,7	ЛР 6 : Изучение цепи переменного тока	4	6
6	ЛР 7: Определение удельного заряда электрона методом	4	6
	магнетрона		
7	ЛР 8 : Изучение сложения гармонических колебаний.	4	6
8	ЛР 9 : Изучение явления интерференции света в тонких	4	6
	пленках на примере колец Ньютона		
8	ЛР 10 : Изучение явления поляризации света. Проверка за-	4	6
	кона Малюса		
9	ЛР 11 : Изучение законов внешнего фотоэффекта	4	6
10	ЛР 12 : Исследование температурной зависимости сопро-	4	6
	тивления металла и полупроводника		
4	Коллоквиум №3	8	16
4	Коллоквиум №4	8	16
4-7	Фронтальный опрос по решению домашних задач	6	10
4-8	Конспектирование лекций	6	10
	Итого за 2 семестр	60	100
-	1		
	Итого	120	200

При оценивании результатов обучения по дисциплине в ходе текущего контроля успеваемости используются следующие критерии. Максимальное количество баллов выставляется обучающемуся при выполнении всех показателей, допускаются несущественные неточности в изложении и оформлении материала.

Наименование, обо- значение	Показатели выставления минимального количества баллов
Лабораторная	Задания выполнены наполовину. Присутствуют серьёзные ошибки. Проде-

Наименование, обо- значение	Показатели выставления минимального количества баллов	
работа	монстрирован удовлетворительный уровень владения материалом.	
	Проявлены низкие способности применять знания и умения к выполнению	
	конкретных заданий.	
	На защите лабораторной работы даны правильные ответы не менее чем на	
	60% заданных вопросов	
Коллоквиум	Продемонстрирован удовлетворительный уровень владения материалом.	
Коллоквиум	Даны правильные ответы на более 60% вопросов	
Фронтальный		
опрос по реше-	Правильно решено более 60% задач	
нию домашних	правильно решено облее 00/0 задач	
задач		
Конспектирова-	Законспектированы все заданные темы. Присутствуют многочисленные	
ние лекций	ошибки: по содержанию, отсутствуют рисунки, схемы, графики	

Промежуточная аттестация по дисциплине проводится в форме экзамена и зачета с оценкой.

Экзамен

Экзамен принимается по теоретическому и практическому материалу 1-го семестра.

На экзамене студент выбирает себе билет, содержащий два теоретических вопроса и одну задачу, и готовится в течение 60 минут. После этого он отвечает преподавателю по содержанию теоретических вопросов билета, а также на дополнительные вопросы. Кроме этого, объясняет ход решение задачи. При получении оценки «неудовлетворительно», студент пересдает экзамен в оговоренные с преподавателем сроки. В случае, если студента не удовлетворяет полученная оценка, он пишет заявление на имя ректора, на котором ставят свою визу: декан/директор факультета/института, на котором обучается студент, и декан факультета МиЕН. После получения согласия ректора студент согласовывает сроки пересдачи с преподавателем, ведущим занятие.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки

Оценка	Критерии оценки
	Правильно выполнены все задания. Продемонстрирован высокий
«отлично»	уровень владения материалом. Проявлены превосходные способности
	применять знания и умения к выполнению конкретных заданий
	Правильно выполнена большая часть заданий. Присутствуют незна-
(/Vopoulo))	чительные ошибки. Продемонстрирован хороший уровень владения
«хорошо»	материалом. Проявлены средние способности применять знания и
	умения к выполнению конкретных заданий
	Задания выполнены более чем наполовину. Присутствуют серьёзные
WHOD HATDODUTALL HOW	ошибки. Продемонстрирован удовлетворительный уровень владения
«удовлетворительно»	материалом. Проявлены низкие способности применять знания и
	умения к выполнению конкретных заданий
	Задания выполнены менее чем наполовину. Продемонстрирован не-
WHOM TO PROTECT HOW	удовлетворительный уровень владения материалом. Проявлены недо-
«неудовлетворительно»	статочные способности применять знания и умения к выполнению
	конкретных заданий

Зачет с оценкой

Для получения зачета студент должен: выполнить и сдать все лабораторные работы (отчеты и теорию), предусмотренные графиком; сдать коллоквиумы №№ 3 и 4; продемонстрировать

навыки решения задач по темам: «Магнитное поле», «Электромагнитные колебания и волны», «Волновая оптика» «Законы теплового излучения»; представить конспекты лекций. При получении суммы баллов ниже минимального значения, студент по договоренности с преподавателем пересдает коллоквиумы и демонстрирует навыки решения задач по указанным темам в присутствии преподавателя. Эту же процедуру проходит студент, желающий повысить свою оценку.

Итоговая оценка по дисциплине может быть выставлена на основе результатов текущего контроля с использованием следующей шкалы:

Оценка	Набрано баллов
«онрилто»	95-100
«хорошо»	85-94
«удовлетворительно»	60-84
«неудовлетворительно»	< 59

Зачет с оценкой выставляется по совокупности результатов текущего контроля успеваемости во 2-м семестре.

При оценивании результатов обучения по дисциплине в ходе промежуточной аттестации используются следующие критерии и шкала оценки

Оценка	Критерии оценки
«отлично»	Правильно выполнены все задания. Продемонстрирован высокий
	уровень владения материалом. Проявлены превосходные способности
	применять знания и умения к выполнению конкретных заданий
«хорошо»	Правильно выполнена большая часть заданий. Присутствуют незна-
	чительные ошибки. Продемонстрирован хороший уровень владения
	материалом. Проявлены средние способности применять знания и
	умения к выполнению конкретных заданий
«удовлетворительно»	Задания выполнены более чем наполовину. Присутствуют серьёзные
	ошибки. Продемонстрирован удовлетворительный уровень владения
	материалом. Проявлены низкие способности применять знания и
	умения к выполнению конкретных заданий
«неудовлетворительно»	Задания выполнены менее чем наполовину. Продемонстрирован не-
	удовлетворительный уровень владения материалом. Проявлены недо-
	статочные способности применять знания и умения к выполнению
	конкретных заданий