МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т.Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

ОП.10 «Численные методы»

09.02.07 Информационные системы и программирование

Фонд оценочных средств разработан на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 09.02.07 "Информационные системы и программирование", утвержденного приказом Министерства образования и науки Российской Федерации 09 декабря 2016 г. № 1547.

Организация ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т.

разработчик: Калашникова»

Разработчик: Салтыкова Екатерина Владимировна – старший

преподаватель кафедры МиИТ

Утверждено: Протокол Ученого совета филиала № 5, от 20 мая 2025 г.

Руководитель образовательной программы

Т.А. Савельева

23 мая 2025 г.

Согласовано: Начальник отдела по учебно-методической работе

И.Ф. Яковлева

23 мая 2025 г.

Содержание

	стр
Паспорт фонда оценочных средств	4
Зачетно-экзаменационные материалы	5
Контрольно-измерительные материалы (примерные варианты	
контрольных работ)	5

ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине «Численные методы»

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
1	Раздел 1. Элементы теории погрешностей	ОК-1, ОК-2, ОК-4, ОК-5, ОК-9, ОК-10, ПК-1.1, ПК 1.2, ПК-11.1	Проверочная работа 1, вопросы к зачету
2	Раздел 2. Методы решения алгебраических уравнений и их систем	ОК-1, ОК-2, ОК-4, ОК-5, ОК-9, ОК-10, ПК-1.1, ПК 1.2, ПК-11.1	Проверочная работа 2, вопросы к зачету
3	Раздел 3. Аппроксимация функций.	ОК-1, ОК-2, ОК-4, ОК-5, ОК-9, ОК-10, ПК-1.1, ПК 1.2, ПК-11.1	Проверочная работа 3, вопросы к зачету
4	Раздел 4. Приближенное вычисление определенных интегралов.	OK-1, OK-2, OK-4, OK-5, OK-9, OK-10, ПК-1.1, ПК 1.2, ПК-11.1	Проверочная работа 4, вопросы к зачету
5	Раздел 5. Численные методы решения дифференциальных уравнений.	OK-1, OK-2, OK-4, OK-5, OK-9, OK-10, ПК-1.1, ПК 1.2, ПК-11.1	Проверочная работа 5, вопросы к зачету

Код	Наименование результата обучения			
OK-1	Выбирать способы решения задач профессиональной деятельности			
	применительно к различным контекстам.			
OK-2	Осуществлять поиск, анализ и интерпретацию информации, необходимой для			
	выполнения задач профессиональной деятельности.			
OK-4	Работать в коллективе и команде, эффективно взаимодействовать с коллегами,			
	руководством, клиентами.			
OK-5	Осуществлять устную и письменную коммуникацию на государственном языке с			
	учетом особенностей социального и культурного контекста.			
ОК-9	Использовать информационные технологии в профессиональной деятельности.			
OK-10	Пользоваться профессиональной документацией на государственном и			
	иностранном языках.			
ПК-1.1	Формировать алгоритмы разработки программных модулей в соответствии с			
	техническим заданием			
ПК-1.2	Разрабатывать программные модули в соответствии с техническим заданием.			
ПК-	Осуществлять сбор, обработку и анализ информации для проектирования баз			
11.1	данных			

ЗАЧЕТНО-ЭКЗАМЕНАЦИОННЫЕ МАТЕРИАЛЫ

Вопросы к дифференцированному зачету

- 1. Приближенные числа.
- 2. Погрешности вычислений: абсолютная и относительная погрешности.
- 3. Значащие, верные и неверные цифры приближенного числа.
- 4. Действия над приближенными числами. Метод подсчета цифр, метод границ.
- 5. Этапы решения уравнений: отделение корней, уточнение корней. Способы отделения корней уравнения.
- 6. Методы решения алгебраических уравнений: метод половинного деления.
- 7. Метод хорд для решения алгебраических уравнений.
- 8. Метод Ньютона решения алгебраических уравнений.
- 9. Численные методы решения систем линейных уравнений: метод Гаусса, метод Зейделя.
- 10. Аппроксимация функций. Интерполяционный полином Лагранжа.
- 11. Интерполяционные полиномы Ньютона для равноотстоящих узлов.
- 12. Численное интегрирование: формулы трапеций, прямоугольника, оценка погрешности, уточненная формула.
- 13. Численное интегрирование: формула Симпсона, метод Монте-Карло.
- 14. Методы решения дифференциальных уравнений. Теорема Пикара. Методы Эйлера и Рунге-Кутта. Оценка погрешности методов.
- 15. Нахождение приближающей функции методом наименьших квадратов.

Критерии оценки:

Оценка **«отлично»** заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебного материала, предусмотренного программой, усвоивший основную литературу и знакомый с дополнительной литературой, рекомендованной программой.

Оценка «**хорошо**» заслуживает обучающийся, обнаруживший полное знание учебного материала, усвоивший основную литературу, рекомендованную в программе. Оценка "хорошо" выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценка «удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, знакомых с основной литературой, рекомендованной программой. Оценка выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала. Оценка ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании образовательного учреждения без дополнительных занятий по рассматриваемой дисциплине.

КОНТРОЛЬНО-ИЗМЕРИТЕЛЬНЫЕ МАТЕРИАЛЫ:

Примерный вариант проверочной работы по разделу 1.

- 1. Указать количество значащих цифр в числе: 2,396037.
- 2. Записать с помощью верных цифр: $x_1 = 0.004507 \pm 0.00001$; $x_2 = 9.999785 \pm 0.0004$.
- 3. Найти абсолютную и относительную погрешности величины p=a+b+c, если a=17,3 см, b=23,6 см, c=14,2 см, $\Delta a=\Delta b=\Delta c=0,1$ см.
- 4. Найти абсолютную и относительную погрешности величины $k = \frac{(a+b) \cdot c^2}{\pi \cdot \sqrt{h}}$.

- 5. Выполнить приближенные вычисления, используя метод подсчета цифр:
- a) 0.348 + 0.1834 + 345.4 + 235.1 + 11.75 + 9.27 + 0.0849 + 0.0214 + 0.000354;

$$6) \frac{12097013}{719}.$$

Примерный вариант проверочной работы по разделу 2.

- 1. В данном уравнении $2x^5 4x^4 + 3x^3 + 2x^2 5x + 7 = 0$:
 - 1) отделить все корни (можно графически с помощью Mathcad);
 - 2) по составленной программе уточнить корни методами половинного деления и методом хорд с точностью 0,0001;
 - 3) Сравнить количество итераций для каждого метода.
- 2. В данном нелинейном уравнении $\sin^2 x x^2 + 0,1 = 0$:
 - 1) отделить все корни;
 - 2) по составленной программе уточнить корни методом итерации с точностью 0,0001.
- 3. Данную систему линейных уравнений решить с помощью метода Гаусса и метода Зейделя с точностью 0,0001.

Программа для каждого метода должна выводить на экран матрицу коэффициентов, решение системы, количество итераций, проверку правильности решения, полученную путем подстановки решения в систему.

Сравнить количество итераций для каждого метода.

$$-0.78x_1 - 0.11x_2 + 0.31x_3 = -2.7$$

$$0.38x_1 - x_2 - 0.12x_3 + 0.22x_4 = 1.5$$

$$0.11x_1 + 0.23x_2 - x_3 - 0.51x_4 = -1.2$$

$$0.17x_1 - 0.21x_2 + 0.31x_3 - x_4 = 0.17$$

Проверить вычисления с помощью MathCad.

Примерный вариант проверочной работы по разделу 3.

1. На отрезке $[x_0; x_5]$ найти случайным образом точки x_1, x_2, x_3, x_4 . Считая точки x_1, x_2, x_3, x_4 узлами итерполяции, найти в них значения функции $f(x_i)$. По этим данным, используя интерполяционный многочлен Лагранжа найти с помощью ПК приближенное значение функции в произвольной точке

 $x \in [x_0; x_5]$, отличной от узлов. Оценить погрешность приближения.

Функцию и узлы x_0 и x_5 выбрать в соответствии с вариантом таблицы 1. Все данные вписывать в таблицу с тремя десятичными знаками.

Таблица результатов:

Значение функции в выбранной точке: f(x) =

Значение многочлена Лагранжа в выбранной точке: L(x) =

Погрешность вычислений: $\varepsilon =$

Φ ункция $y = f(x)$	x_0	<i>X</i> ₅
ln(x) - 0.1x	0,4	2

2. Функция f(x) задана таблично. Найти интерполяционный многочлен Лагранжа 2-ой степени, вычислить его значение в точке a=12.

X	5	10	15
У	2,236	3,162	3,873

3. Используя интерполяционные формулы Ньютона, вычислить значения функции в точках x_1 =1,423 и x_2 =1,456. С помощью конечных разностей оценить погрешность.

x	y
1,415	0,888551
1,420	0,889599
1,425	0,890637
1,430	0,891667
1,435	0,892687
1,440	0,893698
1,445	0,894770
1,450	0,895693
1,455	0,896677
1,460	0,897653
1,465	0,898619

Примерный вариант проверочной работы по разделу 4.

- 1. Вычислить заданный интеграл $\int_0^{\pi/2} \frac{dx}{1+\cos x}$ по формулам прямоугольников и трапеций, если отрезок интегрирования разбит на n=10 равных частей. Оценить погрешность результата. Сравнив с точным значением интеграла, оценить погрешность вычислений.
- 2. Вычислить по формуле Симпсона приближенное значение интеграла $\int_{1}^{2} \frac{\lg(2+\cos x)}{1+x^2} dx$ с точностью 0,000001.
- 3. Вычислите интеграл из задания 2 методом Монте-Карло. Вычисления производить при двух различных n, где $100 \le n \le 1000$. Сравнить ответы с результатом, полученным по методу Симпсона.

Примерный вариант проверочной работы по разделу 5.

Найти решение дифференциального уравнения на отрезке [a;b] сначала с шагом h, затем с шагом h/2 методами Эйлера и Рунге-Кутта.

Оценить погрешность вычислений этих методов.

Проиллюстрируйте ломаные Эйлера и Рунге-Кутта.

Уравнение	Начальные условия	а	b	Шаг һ
y' = 2xy	y(0)=1	0	1	0,1

Критерии оценки:

Оценка *«отпично»* выставляется за контрольную работу, если у студента правильно выполнены все задания. Продемонстрирован высокий уровень владения материалом. Проявлены превосходные способности применять знания и умения к выполнению конкретных заданий.

Оценка «хорошо» выставляется, если правильно выполнена большая часть заданий. Присутствуют незначительные ошибки. Продемонстрирован хороший уровень владения материалом. Проявлены средние способности применять знания и умения к выполнению конкретных заданий.

Оценка «удовлетворительно» выставляется, если задания выполнены более чем наполовину. Присутствуют серьёзные ошибки. Продемонстрирован удовлетворительный

уровень владения материалом. Проявлены низкие способности применять знания и умения к выполнению конкретных заданий.

Оценка *«неудовлетворительно»* выставляется, если задания выполнены менее чем наполовину. Продемонстрирован неудовлетворительный уровень владения материалом. Проявлены недостаточные способности применять знания и умения к выполнению.