МИНОБРНАУКИ РОССИИ

Глазовский инженерно-экономический институт (филиал) федерального государственного бюджетного образовательного учреждения высшего образования «Ижевский государственный технический университет имени М.Т.Калашникова»

«Ижевский государственный технический университет имени М.Т.Калашникова» (ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»)

РАБОЧАЯ ПРОГРАММА

Учебной дисциплины БД.04 «Химия»

Специальность СПО 09.02.07 Информационные системы и программирование

Цикл общеобразовательный

Форма обучения очная

Decre and Server and Server	Всего,	Семестры			
Вид учебной работы	час.	1	2	3	4
Максимальная учебная нагрузка, час	88				
Обязательная аудиторная нагрузка, час	88		88		
в том числе:					
Лекции	44		44		
Практические занятия (семинарские)	44		44		
Лабораторные работы					
Курсовой проект (работа)					
Самостоятельная работа					
Виды промежуточной аттестации					
Экзамен					
Дифференцированный зачет	2		+		
Зачет, сем					
Контрольная работа, сем		•			

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта по специальности среднего профессионального образования 09.02.07 "Информационные системы и программирование", утвержденного приказом Министерства образования и науки Российской Федерации 09 декабря 2016 г. № 1547 с изменениями и дополнениями (приказ Министерства просвещения Российской Федерации от 17.12.2020 № 747 «О внесении изменений в федеральные государственные образовательные стандарты среднего профессионального образования» (зарегистрирован 22.01.2021 № 62178), приказ Министерства просвещения Российской Федерации от 01.09.2022 № 796 «О внесении изменений в федеральные государственные образовательные стандарты среднего профессионального образования» (зарегистрирован 11.10.2022 № 70461)).

Организация разработчик:	ГИЭИ (филиал) ФГБОУ ВО «ИжГТУ имени М.Т. Калашникова»	
Разработчик:	Чукавина Ольга Анатольевна, преподаватель СПО	
Утверждено:	Протокол Ученого совета филиала № 3, от 20 мая 2025 г.	
	Руководитель образовательной программы	
	Т.А. Савельева	
	23 мая 2025 г.	
Согласовано:	Начальник отдела по учебно-методической работе	
	И.Ф. Яковлева	
	23 мая 2025 г.	

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ «Химия»

1.1. Область применения программы

Рабочая программа учебной дисциплины является частью примерной основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО: 09.02.07 Информационные системы и программирование.

1.2. Место учебной дисциплины в структуре основной профессиональной образовательной программы: учебная дисциплина «Химия» относится к общеобразовательному циклу основной программы. Базируется на курсе средней общей образовательной школы и является основой для изучения дисциплины «Безопасность жизнедеятельности», «Экология».

1.3. Цели и задачи учебной дисциплины – требования к результатам освоения дисциплины:

В результате освоения дисциплины обучающийся должен знать:

- -важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем газообразных веществ, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- -основные законы химии: сохранения массы веществ, постоянства состава веществ, Периодический закон Д.И. Менделеева;
- -основные теории химии; химической связи, электролитической диссоциации, строения органических и неорганических соединений;
- -важнейшие вещества и материалы: важнейшие металлы и сплавы; серная, соляная, азотная и уксусная кислоты; благородные газы, водород, кислород, галогены, щелочные металлы; основные, кислотные и амфотерные оксиды и гидроксиды, щелочи, углекислый и угарный газы, сернистый газ, аммиак, вода, природный газ, метан, этан, этилен, ацетилен, хлорид натрия, карбонат и гидрокарбонат натрия, карбонат и фосфат кальция, бензол, метанол и этанол, сложные эфиры, жиры, мыла, моносахариды (глюкоза), дисахариды (сахароза), полисахариды (крахмал и целлюлоза), анилин, аминокислоты, белки, искусственные и синтетические волокна, каучуки, пластмассы;

В результате освоения учебной дисциплины обучающийся должен уметь:

- -называть: изученные вещества по тривиальной или международной номенклатуре;
- -определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, характер среды в водных растворах неорганических и органических соединений, окислитель и восстановитель, принадлежность веществ к разным классам неорганических и органических соединений;
- -характеризовать: элементы малых периодов по их положению в Периодической системе Д.И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и химические свойства изученных неорганических и органических соединений;
- -объяснять: зависимость свойств веществ от их состава и строения, природу химической связи (ионной ковалентной, металлической и водородной), зависимость скорости химической реакции и положение химического равновесия от различных факторов;
- -выполнять химический эксперимент: по распознаванию важнейших неорганических и органических соединений;
- -решать: расчетные задачи по химическим формулам и уравнениям; **владеть:**
- -навыками экологически грамотного поведения в окружающей среде;
- -навыками оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- -навыками безопасного обращения с горючими и токсичными веществами и лабораторным оборудованием;
- навыками самостоятельного поиска химической информации с использованием различных источников (справочных, научных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее представления в различных формах;

Компетенции, формируемые в процессе освоения учебной дисциплины:

- ОК 7. Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях
- ОК 8. Планировать и реализовывать собственное профессиональное и личностное развитие

1.4. Рекомендуемое количество часов на освоение программы учебной дисциплины:

максимальной учебной нагрузки обучающегося 81 часов, в том числе: обязательной аудиторной учебной нагрузки обучающегося 81 часов; самостоятельной работы обучающегося 0 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов	
Максимальная учебная нагрузка (всего)	88	
Обязательная аудиторная учебная нагрузка (всего)	88	
в том числе:		
лабораторные работы		
практические занятия	44	
контрольные работы	-	
курсовая работа (проект)	-	
Самостоятельная работа обучающегося (всего)	0	
Внеаудиторная самостоятельная работа	0	
Итоговая аттестация в форме дифференцированного зачета (2-й семестр)		

2.2. Тематический план учебной дисциплины

	бная		ных ч	ество аудитор- асов при очной с обучения		
	Наименование разделов и тем	Макс. учебная нагрузка, час.	Всего	Теорет. занятий	Лабор. работ	Практ. занятий
	Введение	2	2	2		
Раздел 1	1. Общая и неорганическая химия	32	32	14		14
Тема1.1.	Основные понятия и законы химии	4	4	2		2
Тема1.2.	Периодический закон и Периодическая система химических элементов Д.И. Менделеева и строение атома	4	4	2		2
Тема1.3.	Строение вещества	4	4	2		2
Тема1.4.	Вода. Растворы. Электролитическая диссоциация	4	4	2		2
Тема1.5.	Классификация неорганических соединений и их свойства	4	4	2		2
Тема1.6.	Химические реакции	6	6	2		4
Тема1.7.	Металлы и неметаллы	6	6	2		4
Раздел2.	2. Органическая химия	54	54	24		30
Тема2.1.	Основные понятия органической химии и теория строения органических соединений	12	12	6		6
Тема2.2.	Углеводороды и их природные источники	14	14	6		8
Тема2.3.	Кислородсодержащие органические соединения	14	14	6		8

Тема2.4.	Азотсодержащие органические соединения. Полимеры	14	14	6	8
	Итоговое повторение	4	4	4	
	ВСЕГО	88	88	44	44

2.3. Содержание учебной дисциплины

Наименова-	Содержание учебного материала, практических занятий,	Объ-
ние разделов	самостоятельной работы обучающихся	
и тем		часов
	Введение	2
Раздел 1	Тема 1.1. Основные понятия и законы химии	2
Общая и	Основные понятия химии. Вещество. Атом. Моле-	
неоргани-	кула. Химический элемент. Аллотропия. Простые и	
ческая	сложные вещества. Качественный и количественный	
химия	состав веществ. Химические знаки и формулы. Отно-	
	сительные атомная и молекулярная массы. Количе-	
	ство вещества. Молярная масса.	
	Основные законы химии. Стехиометрия. Закон со-	
	хранения массы веществ. Закон постоянства состава	
	веществ молекулярной структуры. Закон Авогадро и	
	следствия их него.	
	Практические занятия	2
	Нахождение относительной молекулярной массы,	
	определение массовой доли химических элементов в	
	сложном веществе.	
	Тема 1.2. Периодический закон и Периодическая	2
	система химических элементов Д.И. Менделеева и	
	строение атома.	
	Периодический закон. Открытие Д.И. Менделеевым	
	Периодического закона. Периодический закон в фор-	
	мулировке Д.И. Менделеева. Периодическая таблица	
	химических элементов – графическое отображение	
	периодического закона. Структура периодической	
	таблицы: периоды (малые и большие), группы (глав-	
	ная и побочная).	
	Строение атома и периодический закон Д.И. Мен-	
	делеева. Атом – сложная частица. Ядро (протоны и	
	нейтроны) и электронная оболочка. Изотопы. Строе-	
	ние электронных оболочек атомов элементов малых	
	периодов. Особенности строения электронных оболо-	
	чек атомов элементов больших периодов (переходных	
	элементов). Понятие об орбиталях. s-, p- и d-	
	Орбитали. Современная формулировка периодическо-	
	орониями. Современным формулировки периодическо-	

го закона. Значение периодического закона и перио-	
дической системы химических элементов Д.И. Мен-	
делеева для развития науки и понимания химической	
картины мира	
Практические занятия	2
Построение электронных конфигураций атомов хими-	
ческих элементов. Моделирование построения Перио-	
дической таблицы химических элементов. Характери-	
стика элементов по периодической системе Д.И. Мен-	
делеева	
Тема 1.3. Строение вещества	2
Ионная химическая связь. Ионные кристаллические	
решетки. Свойства веществ с ионным типом кристал-	
лической решетки. Ковалентная химическая связь.	
Механизм образования ковалентной связи (обменный	
и донорно-акцепторный). Электроотрицательность.	
Молярные и атомные кристаллические решетки.	
Свойства веществ с молярными и атомными кристал-	
лическими решетки.	
Металлическая связь. Металлические кристалличе-	
_	
ские решетки.	
Водородная связь. Агрегатные состояния веществ и	
водородная связь	
Чистые вещества и смеси . Понятие о смеси веществ. Гомогенные и гетерогенные смеси. Состав смесей:	
*	
объемная и массовая доли компонентов смеси, массо-	
вая доля примесей.	
Дисперсные системы. Дисперсная фаза и дисперси-	
онная среда. Классификация дисперсных систем. По-	
нятие о коллоидных системах	2
Практические занятия	2
Нахождение состава смесей: объемная и массовая до-	
ли компонентов смеси, массовая доля примесей.	2
Тема 1.4. Вода. Растворы. Электролитическая дис-	2
социация	
Растворы. Вода как растворитель. Растворимость ве-	
ществ. Насыщенные, ненасыщенные, пересыщенные	
растворы. Зависимость растворимости газов, жидко-	
стей и твердых веществ от различных факторов. Мас-	
совая доля растворенного вещества. Молярная кон-	
центрация.	
Электролитическая диссоциация. Электролиты и	
неэлектролиты. Механизмы электролитической дис-	
социации для веществ с различными типами химиче-	
ской связи. Гидратированные и негидратированные	

ионы. Степень электролитической диссоциации.	
Сильные и слабые электролиты. Основные положения	
теории электролитической диссоциации. Кислоты, ос-	
нования и соли как электролиты	
Практические занятия	2
Нахождение массовой доли растворенного вещества,	
молярной концентрации, степени электролитической	
диссоциации. Запись схем диссоциации электролитов.	
Тема 1.5. Классификация неорганических соедине-	2
ний и их свойства	
Кислоты и их свойства. Кислоты как электролиты,	
их классификация по различным признакам. Химиче-	
ские свойства кислот в свете теории электролитиче-	
ские своиства кислот в свете теории электролитичествой диссоциации. Особенности взаимодействия кон-	
центрированной серной и азотной кислот с металлами.	
Основные способы получения кислоты.	
· · · · · · · · · · · · · · · · · · ·	
Основания и их свойства. Основания как электроли-	
ты, их классификация по различным признакам. Хи-	
мические свойства оснований в свете теории электро-	
литической диссоциации. Разложение нерастворимых	
в воде оснований. Основные способы получения ос-	
нований.	
Соли и их свойства. Соли как электролиты. Соли	
средние, кислые и основные. Химически свойства со-	
лей в свете теории электролитической диссоциации.	
Способы получения солей. Гидролиз солей.	
Оксиды и их свойства. Солеобразующие и несолеоб-	
разующие оксиды. Основные, амфотерные и кислот-	
ные оксиды. Зависимость характера оксида от степени	
окисления образующего его металла. Химические	
свойства оксидов. Получение оксидов.	
Практические занятия	2
Составление химических реакций взаимодействия ме-	
таллов с кислотами; взаимодействия кислот с оксида-	
ми металлов; взаимодействия кислот с основаниями;	
взаимодействия кислот с солями; взаимодействия ще-	
лочей с солями; взаимодействия солей с металлами;	
взаимодействия солей друг с другом. Разложение не-	
растворимых оснований. Гидролиз солей различного	
типа.	
Тема 1.6. Химические реакции	2
Классификация химических реакций. Реакции со-	4
единения, разложения, замещения, обмена. Каталити-	
· ·	
ческие реакции. Гомогенные и гетерогенные реакции.	
Экзотермические и эндотермические реакции. Тепло-	

	вой эффект химических реакций. Термохимические	
	уравнения. Окислительно-восстановительные ре-	
	акции. Степень окисления. Окислитель и восстанов-	
	ление. Восстановитель и окисление. Метод электрон-	
	ного баланса для составления уравнений окислитель-	
	но-восстановительных реакций. Электролиз	
	Скорость химических реакций. Понятие о скорости	
	химических реакций. Зависимость скорости химиче-	
	ских реакций от различных факторов: природы реаги-	
	рующих веществ, их концентрации, температуры, по-	
	верхности соприкосновения и использования катали-	
	заторов.	
	Обратимость химических реакций. Обратимые и	
	необратимые реакции. Химическое равновесие и спо-	
	собы его смещения	4
	Практические занятия	4
	Составление уравнений окислительно-	
	восстановительных реакций методом электронно ба-	
	ланса. Электролиз раствора. Расчетные задачи на из-	
	менение скорости химической реакции; смещение	
	равновесия в обратимом процессе.	
	Зависимость скорость химической реакции от концен-	
	трации	
	Тема 1.7. Металлы и неметаллы	2
	Металлы. Особенности строения атомов и кристал-	
	лов. Физические свойства металлов. Классификация	
	металлов по различным признакам. Химические свой-	
	ства металлов. Электрохимический ряд напряжений	
	металлов. Металлотермия. Общие способы получения	
	металлов. Понятие о металлургии. Пирометаллургия,	
	гидрометаллургия и электрометаллургия. Сплавы чер-	
	ные и цветные.	
	Неметаллы. Особенности строения атомов. Неметал-	
	лы – простые вещества. Зависимость свойств галоге-	
	нов от их положения в Периодической системе. Окис-	
	лительные и восстановительные свойства неметаллов	
	в зависимости от их положения в ряду электроотрица-	
	тельности.	
	Практические занятия	4
	Решение задач и составление уравнений с учетом хи-	
	мических свойств металлов и неметаллов	
	Химические свойства металлов	
Раздел 2.	Тема 2.1. Основные понятия органической химии и	6
Органиче-	теория строения органических соединений	
ская химия	Предмет органической химии. Природные, искус-	

ственные и синтетические органические вещества. Сравнение органических веществ с неорганическими. Валентность. Химическое строение как порядок соединения атомов в молекулы по валентности Теория строения органических соединений А.М. Бутлерова. Основные положения теории химического строения. Изомерия и изомеры. Химические формулы и модели молекул в органической химии Классификация органических веществ. Классификация веществ по строению углеродного скелета и наличию функциональных групп. Гомологи и гомология. Начала номенклатуры IUPAC Классификация реакций в органической химии. Реакции присоединения (гидрирования, галогенирования, гидрогалогенирования, гидратации). Реакции отщепления (дегидрирования, дегидрогалогенирования, дегидратации). Реакции замещения. Реакции изомеризации Практические занятия 6 Составление уравнений реакций в органической химии Тема 2.2. 6 Углеводороды и их природные источ-Алканы. Гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование. Применение алканов. Алкены. Этилен, его получение (дегидрированием этана, деполимеризацией полиэтилена). Гомологический ряд, изомерия, номенклатура алкенов. Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Применение этилена на основе свойств. Диены и каучуки. Понятие о диенах как углеводородах с двумя двойными связями. Сопряженные диены. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Натуральный и синтетические каучуки. Резина. Алкины. Ацетилен. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств. Межклассовая изомерия с алкадиенами. Арены. Бензол. Химические свойства бензола: горе-

ние). Применение бензола на основе свойств.
Природные источники углеводородов . Природный газ: состав, применение в качестве топлива. Нефть.
Состав и переработка нефти. Перегонка нефти.
Нефтепродукты.
Практические занятия
Составление изомеров органических веществ. Состав-
ление уравнений реакций в органической химии
Обнаружение непредельных соединений в жидких
нефтепродуктах
Тема 2.3. Кислородсодержащие органические со-
единения
Спирты. Получение этанола брожением глюкозы и
гидратацией этилена. Гидроксильная группа как
функциональная. Понятие о предельных одноатомных
спиртах. Химические свойства этанола: взаимодей-
ствие с натрием, образование простых и сложных
эфиров, окисление в альдегид. Применение этанола на
основе свойств. Алкоголизм, его последствия и пре-
дупреждение.
Глицерин как представитель многоатомных спиртов.
Качественная реакция на многоатомные спирты. При-
менение глицерина.
Фенол. Физические и химические свойства фенола.
Взаимное влияние атомов в молекуле фенола: взаимо-
действие с гидроксидом натрия и азотной кислотой
Альдегиды. Понятие об альдегидах. Альдегидная
группа как функциональная. Формальдегид и его
свойства: окисление в соответствующую кислоту,
восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов.
Применение формальдегида на основе его свойств
Карбоновые кислоты. Понятие о карбоновых кисло-
тах. Карбоксильная группа как функциональная. Го-
мологический ряд предельных одноосновных карбо-
новых кислот. Получение карбоновых кислот окисле-
нием альдегидов. Химические свойства уксусной кис-
лоты: общие свойства с минеральными кислотами и
реакция этерификации. Применение уксусной кисло-
ты на основе свойств. Высшие жирные кислоты на
примере пальмитиновой и стеариновой кислоты
Сложные эфиры и жиры. Получение сложных эфи-
ров реакцией этерификации. Сложные эфиры в при-
роде, их значение. Применение сложных эфиров на

основе свойств. Жиры как сложные эфиры. Классификация жиров. Химические свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла Углеводы. Углеводы, их классификация: моносахариды (глюкоза, фруктоза), дисахариды (сахароза) и полисахариды (крахмал и целлюлоза). Глюкоза — вещество с двойственной функцией — альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, спиртовое брожение. Применение глюкозы на основе свойств. Значение углеводов в живой природе и жизни человека. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза полисахарид	
Практические занятия	8
Нахождение молекулярной формулы вещества. Со-	
ставление уравнений реакций в органической химии	
Свойства уксусной кислоты.	6
Тема 2.4. Азотсодержащие органические соедине- ния. Полимеры	0
Амины. Понятие об аминах. Алифатические амины,	
их классификация и номенклатура. Анилин, как орга-	
ническое основание. Получение анилина из нитробен-	
зола. Применение анилина на основе свойств. Амино-	
кислоты. Аминокислоты как амфотерные дифункцио-	
нальные органические соединения. Химические свой-	
ства аминокислот: взаимодействие со щелочами, кис-	
лотами и друг с другом (реакция поликонденсации).	
Пептидная связь и полипептиды. Применение амино-	
кислот на основе свойств. Белки. Первичная, вторичная, третичная структуры белков. Химические свой-	
ства белков: горение, денатурация, гидролиз, цветные	
реакции. Биологические функции белков.	
Полимеры. Белки и полисахариды как биополимеры.	
Пластмассы. Получение полимеров реакцией полиме-	
ризации и поликонденсации. Термопластичные и тер-	
мореактивные пластмассы. Представители пластмасс.	
Волокна, их классификация. Получение волокон. От-	
дельные представители химических волокон.	
Практические занятия	8
Нахождение молекулярной формулы вещества. Со-	
ставление уравнений реакций в органической химии	
Свойства белков	4
Итоговое повторение	4

2.3. Рекомендуемые образовательные технологии

Технология

Использование на лекциях и практических занятиях иллюстративных материалов, плакатов, демонстрационных моделей.

Использование на лекциях презентаций по дисциплине.

Использование проблемного изложения лекционного материала и создание проблемных ситуаций на практических занятиях.

Использование компьютерного тестирования для текущего контроля освоения студентами знаний, умений, навыков по дисциплине.

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация учебной дисциплины требует наличия

- -лекционной аудитории: комплект мебели для обучающихся; место преподавателя, наглядные пособия; учебно-методический комплекс.
- -лаборатория «Химии»: комплект мебели для обучающихся; набор реактивов для проведения лабораторных работ; раковина; шкаф вытяжной; огнетушитель; аптечка с набором медикаментов; инструкция по техники безопасности при работе в кабинете химии; периодическая таблица элементов.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы

Основные источники:

- 1. Габриелян О.С., Остроумов И.Г. Химия для профессий и специальностей технического профиля: учебник для студ. учреждений сред. проф. образования. М., 2014.- 272 с.
- 2. Габриелян О.С., Остроумов И.Г., Сладков С.А., Дорофеева Н.М. Практикум: учеб. пособие для студ. учреждений сред. проф. образования. М., 2014.
- 3. Габриелян О. С., Лысова Г.Г. Химия. 10. 11 класс. М: «Дрофа», 2013.
- 4. Еремин В. В. Химия. М.: «Дрофа», 2015.
- 5. Рудзитис Г. Е., Фельдман Е.Г. Химия 10, 11 кл. М.: «Просвещение», 2014.-224 с.

Дополнительные источники:

1. Хомченко Г.П. Неорганическая химия [Электронный ресурс] : учебник для сельско-хозяйственных вузов / Г.П. Хомченко, И.К. Цитович. — Электрон. текстовые данные. — СПб. : Квадро, 2017. — 464 с

- 2. Пресс И.А. Основы общей химии [Электронный ресурс] : учебное пособие / И.А. Пресс. Электрон. текстовые данные. СПб. : ХИМИЗДАТ, 2017. 352 с.
- 3. Гончарова Г.Н. Теоретические основы химии [Электронный ресурс] : учебное пособие / Г.Н. Гончарова. Электрон. текстовые данные. Самара: Поволжский государственный университет телекоммуникаций и информатики, 2017. 84 с.
- 4. Курс по неорганической химии [Электронный ресурс] / . Электрон. текстовые данные. Новосибирск: Сибирское университетское издательство, Норматика, 2016. 118 с.
- 5. Сборник задач по общей химии [Электронный ресурс] : учебное пособие / В.П. Егунов [и др.]. Электрон. текстовые данные. Самара: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2016.
- 6. Сборник задач по общей химии [Электронный ресурс] : учебное пособие / В.П. Егунов [и др.]. Электрон. текстовые данные. Самара: Самарский государственный архитектурно-строительный университет, ЭБС АСВ, 2016.
- 7. Семенов И.Н. Химия [Электронный ресурс] : учебник для вузов / И.Н. Семенов, И.Л. Перфилова. Электрон. текстовые данные. СПб. : ХИМИЗ-ДАТ, 2016. 656 с.

Программное обеспечение и Интернет-ресурсы

- 1. http://www.xumuk.ru/- сайт о химии
- 2.<u>http://www.orgchem.ru/</u> интерактивный мультимедиа учебник по органической химии для школьников.
- 3. https://himi4ka.ru/ химия с нуля

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения практических занятий в виде опроса, заданий на практических занятиях и лабораторных работах и в зачетных билетах, а также выполнения обучающимися домашних заданий.

Результаты обучения (освоенные умения, знания, компетенции)

Знания:

- -важнейшие химические понятия: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем газообразных веществ, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа, изомерия, гомология;
- -основные законы химии: сохранения массы веществ, постоянства состава веществ, Периодический закон Д.И. Менделеева;
- -основные теории химии: химической связи, электролитической диссоциации, строения органических и неорганических соединений;
- -важнейшие вещества и материалы: важнейшие металлы и сплавы; серная, соляная, азотная и уксусная кислоты; благородные газы, водород, кислород, галогены, щелочные металлы; основные, кислотные и амфотерные оксиды и гидроксиды, щелочи, углекислый и угарный газы, сернистый газ, аммиак, вода, природный газ, метан, этан, этилен, ацетилен, хлорид натрия, карбонат и гидрокарбонат натрия, карбонат и фосфат кальция, бензол, метанол и этанол, сложные эфиры, жиры, мыла, моносахариды (глюкоза), дисахариды (сахароза), полисахариды (крахмал и целлюлоза),

Формы и методы контроля и оценки результатов обучения

Текущий контроль:

устный контроль (пересказ, диалог, монолог, деловая игра, дискуссия);

письменный контроль (тест) фронтальный контроль (опрос);

индивидуальный контроль текущий контроль (проверка самостоятельной работы студента);

рейтинговая оценка знаний студентов по учебной дисциплине (ежемесячно).

Промежуточный контроль:

Выполнение практических работ

Выполнение лабораторных работ №1,2,3,4

Итоговый контроль:

Дифференцированный зачет

анилин, аминокислоты, белки, искусственные и синтетические волокна, каучуки, пластмассы **Умения:**

- -называть: изученные вещества по «тривиальной» или международной номенклатурам;
- -определять: валентность и степень окисления химических элементов, тип химической связи в соединениях, заряд иона, тип кристаллической решетки, характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, изомеры и гомологи, принадлежность веществ к разным классам неорганических и органических соединений; характер взаимного влияния атомов в молекулах, типы реакций в неорганической и органической химии;
- -характеризовать: *s*-, *p*-, *d*-элементы по их положению в Периодической системе Д.И. Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических и органических соединений; строение и свойства органических соединений (углеводородов, спиртов, фенолов, альдегидов, кетонов, карбоновых кислот, аминов, аминокислот и углеводов);
- -объяснять: зависимость свойств химического элемента и образованных им веществ от положения в Периодической системе Д.И. Менделеева; зависимость свойств неорганических веществ от их состава и строения, природу химической связи, зависимость скорости химической реакции от различных факторов, реакционной способности органических соединений от строения их молекул;
- -выполнять химический эксперимент по распознаванию важнейших неорганических и органических веществ, получению конкретных веществ, относящихся к изученным классам соединений;
- проводить расчеты по химическим формулам и уравнениям реакций;
- -осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи химической информации и ее

представления в различных формах;	
Компетенции:	
ОК 7. Содействовать сохранению окру-	Проверка самостоятельной ра-
жающей среды, ресурсосбережению, эффек-	боты студента.
тивно действовать в чрезвычайных ситуациях	Работа со словарями и спра-
ОК 8. Планировать и реализовывать соб-	вочной литературой
ственное профессиональное и личностное раз-	Работа с интернет источника-
витие	МИ
	Работа в составе группы
	Разработка тестовых заданий,
	кроссвордов.

4.2 Формы и содержание текущего, промежуточного и итогового контроля

Текущий контроль учебного материала заключается в следующем:

- устный опрос по пройденной теме;
- тестовые задания.

4.3 Примерный тест по курсу «Химии»

4.3.1 Примерный тест по курсу «Неоганическая химия»

- 1. К простым веществам относится
 - 1) серная кислота
 - 2) спирт
 - 3) оксид калия
 - 4) кислород
- **2.** Кислотными свойствами обладает оксид элемента, который в периодической системе находится
 - 1) в 3-м периоде, ІІІА группе
 - 2) во 2-м периоде, IVA группе
 - 3) в 3-м периоде, ПА группе
 - 4) во 2-м периоде, ІА группе
- **3.** В атоме фосфора общее число электронов и число электронных слоев соответственно равны
 - 1) 31,3
 - 2) 15,5
 - 3) 15,3
 - 4) 31,5
- **4.** Вещество, в котором степень окисления углерода равна +2,
 - 1) углекислый газ
 - 2) угарный газ
 - 3) известняк
 - 4) угольная кислота
- 5. Среди всех видов кристаллических решеток самой непрочной является
 - ионная

- 2) металлическая
- 3) атомная
- 4) молекулярная
- **6.** Реакция между оксидом меди(II) и серной кислотой относится к реакциям
 - 1) обмена
 - 2) соединения
 - 3) замещения
 - 4) разложения
- 7. Электролитом не является
 - 1) $Mg(OH)_2$
 - $Ca(OH)_2$
 - 3) KOH
 - 4) CsOH
- 8. Реакции ионного обмена соответствует уравнение
 - 1) $SO_2 + 2NaOH = Na_2SO_3 + H_2O$
 - 2) $Na_2O + SO_2 = Na_2SO_3$
 - 3) $Na_2SO_3 + 2HCl = 2NaCl + H_2O + SO_2 \uparrow$
 - 4) $2HCl + Zn = ZnCl_2 + H_2 \uparrow$
- 9. В растворе не могут одновременно находиться ионы
 - Zn^{2+} и NO_3
 - 2) Al³⁺ и Cl⁻
 - 3) Ag⁺ и Cl⁻
 - 4) $Cu^{2+} u SO_4^{2-}$
- **10.** Основные оксиды состава ЭО образует каждый из металлов, указанных в ряду
 - 1) натрий, калий, рубидий
 - 2) алюминий, барий, кальций
 - 3) магний, кальций, стронций
 - 4) бериллий, литий, цезий
- 11. Оксид углерода(IV) реагирует с каждым из двух веществ
 - 1) с водой и оксидом бария
 - 2) с кислородом и оксидом натрия
 - 3) с сульфатом натрия и гидроксидом калия
 - 4) с оксидом железа(III) и серной кислотой
- 12. Гидроксид бария реагирует
 - 1) хлорид натрия
 - 2) сульфат натрия
 - 3) оксид натрия
 - 4) гидроксид натрия
- 13. Серная кислота не взаимодействует
 - 1) с оксидом азота(V)
 - 2) с оксидом натрия
 - 3) с гидроксидом меди(II)
 - 4) с хлоридом бария

- **14.** Сульфат меди(II) взаимодействует с каждым из группы веществ в ряду 1) Mg, KOH, NaCl Zn, NaOH, BaCl₂ 2) 3) Fe, AgNo₃, Mg(OH)₂ Ag, KNO₃, KOH Для схемы превращений $N_2 \rightarrow NH_3 \rightarrow NH_4OH \rightarrow NH_4Cl \rightarrow AgCl$ необ-**15.** ходимо последовательно использовать вещества, указанные в ряду 1) H₂, H₂O, HCl, AgNO₃ 2) O₂, H₂O, AgNO₃, HCl 3) H₂, NaOH, HCl, KNO₃ HCl, H₂O, KNO₃, CuCl₂ В схеме превращений веществ $Cu(NO_3)_2 \rightarrow Cu(OH)_2 \rightarrow X \rightarrow Cu$ веще-**16.** ством «X» является 1) CuCl₂ 2) CuO 3) Cu_2O 4) CuSO₄ **17.** Синюю окраску лакмус имеет в растворе 1) соляной кислоты 2) хлорида натрия 3) гидроксида натрия 4) азотной кислоты **18.** Металлические свойства слабее всего выражены 1) у натрия 2) у магния 3) у кальция 4) у алюминия **19.** К окислительно-восстановительным реакциям относится 1) $Na_2O + H_2O = 2NaOH$ $CuO + H_2SO_4 = CuSO_4 + H_2O$ 2) 3) $CaCO_3 = CaO + CO_2$ 4) $Zn + 2HCl = ZnCl_2 + H_2$ 20. Установите соответствие между названиями элементов и видом химической связи, которая образуется в их соединениях и простых веществах ВИД ХИМИЧЕСКОЙ СВЯЗИ НАЗВАНИЕ ЭЛЕМЕНТОВ A) 1) азот и водород металлическая Б) углерод и кальций 2) ковалентная полярная B) 3) атомы кислорода ковалентная неполярная Γ) 4) атомы стронция ионная
- 23. Вычислить массу цинка, прореагировавшего с раствором соляной кислоты, если при реакции выделилось 5,6 литров водорода
- **24.** Напишите уравнения реакций, с помощью которых можно осуществить превращения алюминий \rightarrow хлорид алюминия \rightarrow X \rightarrow оксид алюминия
- **25.** Вычислите массу карбоната кальция, прореагировавшего с раствором азотной кислоты массой 63 грамма и массовой долей кислоты в растворе 20%.

КРИТЕРИИ ОЦЕНКИ: За каждый правит ответ 2 балла <70% - «2» до 34 баллов - «2» 70%-80% - «3» 39 балл - 35 балла - «3» 80%-90% - «4» 44 баллов - 40 баллов - «4» > 90% - «5» 50 баллов - 45 баллов - «5» 4.3.2 Примерный тест по курсу «Органическая химия» 1. Вещества, имеющие формулы СН3 – О – СН3 и СН3 – СН2 – ОН, являются 2) изомерами; 1) гомологами; 3) полимерами; 4) пептидами. 2. Углеводород, в молекуле которого атомы углерода имеют sp³ гибридизацию 1) бутен-1; 2) бутан; 3) бутадиен-1,2; 4) бутин-1. 3. Продуктом гидратации этилена является: 1) спирт; 2) кислота; 3) альдегид; 4) алкан. 4. Только в одну стадию может протекать гидрирование этого углеводоро-1) бутадиен-1,3; 2) бутен-1; 3) бензол; 4) бутин-2. 5. Количество атомов водорода в циклогексане: 1) 12; 2) 8; 3) 10; 4) 14. 6. Реакция среды в водном растворе глицина 2) кислая; 1) нейтральная; 3) соленая: 4) шелочная. 7. В промышленности ароматические углеводороды получают 1) природного газа; 2) нефти; 3) остатков горных поиз... род; 4) торфа. 8. Уксусная кислота не вступает во взаимодействие с веществом 1) оксид кальция 3) медь 2) метанол 4) пищевая сода 9. Ацетилен принадлежит к гомологическому ряду: 1) алканов; 2) алкинов; аренов; алкенов 10. Полипропилен получают из вещества, формула которого 1) CH2 = CH2; 2) CH = CH; 3) CH3 - CH2 - CH3; 4) CH2 = CH - CH3. 11. К ядовитым веществам относится: 2) этанол; 3) пропанол; 4) бутанол. 1) метанол; 12. Фенол нельзя использовать для получения 1) красителей 3) пищевых добавок 2) капрона 4) взрывчатых веществ

13. Формалин – это водный раствор 1) уксусного альдегида

Название вещества число пи - связей

2) уксусной кислоты

1.

1) этан

его молекуле.

20

3) муравьиного альдегида

4) этилового спирта

а) ноль

Установите соответствие между названием вещества и числом π-связей в

- 2) бутадиен-1,3 3) пропен-1
- 4) ацетилен

- б) одна
- в) две
- г) три
- д) четыре
- 2. Установите соответствие между названием вещества и его нахождением в природе:

вещество

нахождение в природе Глюкоза а) в соке сахарной свеклы

2) Крахмал б) в зерне

3) Сахароза в) в виноградном сахаре

4) Целлюлоза г) в древесине

Установите соответствие между названием вещества и его формулой.

Название вещества

Формула

- 1) этан
- 2) метанол
- 3) пропановая кислота
- 4) ацетилен

- a) CH3-CH3
- б) CH3-OH
- B) CH=CH
- г) CH3-CH2-COH
- д) CH3-CH2-COOH

КРИТЕРИИ ОЦЕНКИ:

За каждый правит ответ 2 балла

<70% - «2» до 21баллов - «2»

70%-80% - «3» 25 балл - 22 балла - «3»

80%-90% - «4» 28 баллов - 26 баллов - «4»

> 90% - «5» 32 баллов - 29 баллов - «5»

4.5. Вопросы к дифференцированному зачету:

- Предмет и задачи химии. Основные понятия химии (химический элемент, атом, молекула, вещество, аллотропия). Основные законы химии (закон постоянства состава вещества, закон Авогадро, закон сохранения массы вещества, периодический закон Д.И. Менделеева).
- Строение Периодической системы химических элементов Д.И. Менделеева, закономерности изменения свойств в системе и ее значение. Строение атома химического элемента. Привести пример на элементах 1-3 периода ПСХЭ Д.И. Менделеева.
- Состав и строение вещества. Химическая формула. Относительная атомная и молекулярная масса. Массовая доля элемента в химическом соединении. Вычислить массовую долю элементов в соединении (по выбору учителя).
- Типы химической связи (ионная, ковалентная, металлическая, водородная), механизм образования, свойства веществ с различными химическими связями. Привести пример схемы образования каждого типа связи.
- 5. Дисперсные системы: состав, классификации, примеры веществ, свойства веществ.

- 6. Чистые вещества и смеси. Виды смесей, их значение. Вычислить массовые доли компонентов веществ в смеси (по выбору учителя).
- 7. Основные положения теории электролитической диссоциации (формулировка и их сущность). Записать уравнение в ионном виде (по выбору учителя).
- 8. Кислоты в свете теории электролитической диссоциации (понятие «кислоты», их свойства и значение). Записать уравнения реакций в ионном виде, подтверждающие свойства кислот.
- 9. Основания в свете теории электролитической диссоциации (понятие «основания», их свойства и значение). Записать уравнения реакций в ионном виде, подтверждающие свойства оснований.
- 10. Соли в свете теории электролитической диссоциации (понятие «соли», их свойства и значение). Записать уравнения реакций в ионном виде, подтверждающие свойства солей.
- 11. Оксиды в свете теории электролитической диссоциации (понятие «оксиды», их свойства и значение). Записать уравнения реакций в ионном виде, подтверждающие свойства оксидов.
- 12. Классификации химических реакций (по количеству и составу реагентов и продуктов реакции, по изменению степени окисления, но тепловому эффекту, по наличию катализатора, по фазовому состоянию и т.д.). Привести примеры уравнений реакций к каждой классификации.
- 13. Скорость химической реакции, факторы влияющие на скорость химической реакции. Химическое равновесие и способы его смещения. Привести пример способов смещения химического равновесия на реакции синтеза аммиака.
- 14. Металлы (положение в ПСХЭ Д.И. Менделеева, строение атома, физические и химические свойства, применение). Привести примеры химических реакций металлов на конкретных примерах (уравнения записать в молекулярном и ионном виде). Сплавы (виды, их применение).
- 15. Способы получения металлов (общие этапы производства, виды металлургии с примерами). Коррозия металлов (понятие, виды коррозии и способы защиты от коррозии).
- 16. Неметаллы (положение в ПСХЭ Д.И. Менделеева, строение атома, физические и химические свойства, применение). Привести примеры химических реакций неметаллов на конкретных примерах (уравнения записать в молекулярном и ионном виде).
- 17. Теория строения органических соединений А.М. Бутлерова (предпосылки создания, положения теории и их пояснение с примерами, ее значение для развития химии). Классификация органических веществ. Классификация веществ по строению углеродного скелета и наличию функциональных групп. Гомологи и гомология. Начала номенклатуры IUPAC.
- 18. Классификация реакций в органической химии. Реакции присоединения (гидрирования, галогенирования, гидрогалогенирования, гидратации). Реакции отщепления (дегидрирования, дегидрогалогенирования, дегидратации). Реакции замещения. Реакции изомеризации.

- 19. Алканы: гомологический ряд, изомерия и номенклатура алканов. Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование. Применение алканов на основе свойств
- 20. Алкины. Ацетилен. Химические свойства ацетилена: горение, обесцвечивание бромной воды, присоединение хлороводорода и гидратация. Применение ацетилена на основе свойств. Межклассовая изомерия с алкадиенами.
- 21. Алкены. Этилен, его получение (дегидрированием этана, деполимеризацией полиэтилена). Гомологический ряд, изомерия, номенклатура алкенов. Химические свойства этилена: горение, качественные реакции (обесцвечивание бромной воды и раствора перманганата калия), гидратация, полимеризация. Применение этилена на основе свойств.
- 22. Диены и каучуки. Понятие о диенах как углеводородах с двумя двойными связями. Сопряженные диены. Химические свойства бутадиена-1,3 и изопрена: обесцвечивание бромной воды и полимеризация в каучуки. Натуральный и синтетические каучуки. Резина.
- 23. Арены. Бензол. Химические свойства бензола: горение, реакции замещения (галогенирование, нитрование). Применение бензола на основе свойств.
- 24. Природные источники углеводородов. Природный газ: состав, применение в качестве топлива. Нефть. Состав и переработка нефти. Перегонка нефти. Нефтепродукты.
- 25. Спирты. Получение этанола брожением глюкозы и гидратацией этилена. Гидроксильная группа как функциональная. Понятие о предельных одноатомных спиртах. Химические свойства этанола: взаимодействие с натрием, образование простых и сложных эфиров, окисление в альдегид. Применение этанола на основе свойств. Алкоголизм, его последствия и предупреждение.
- 26. Глицерин как представитель многоатомных спиртов. Качественная реакция на многоатомные спирты. Применение глицерина. Карбоновые кислоты (состав, строение, изомерия, номенклатура, физические и химические свойства, способы получение, применение).
- 27. Физические и химические свойства фенола. Взаимное влияние атомов в молекуле фенола: взаимодействие с гидроксидом натрия и азотной кислотой. Применение фенола на основе свойств.
- 28. Альдегиды. Понятие об альдегидах. Альдегидная группа как функциональная. Формальдегид и его свойства: окисление в соответствующую кислоту, восстановление в соответствующий спирт. Получение альдегидов окислением соответствующих спиртов. Применение формальдегида на основе его свойств.
- 29. Понятие о карбоновых кислотах. Карбоксильная группа как функциональная. Гомологический ряд предельных одноосновных карбоновых кислот. Получение карбоновых кислот окислением альдегидов. Химические свойства уксусной кислоты: общие свойства с минеральными кислотами и реакция этерификации. Применение уксусной кислоты на основе свойств. Высшие жирные кислоты на примере пальмитиновой и стеариновой.
- 30. Сложные эфиры и жиры. Получение сложных эфиров реакцией этерификации. Сложные эфиры в природе, их значение. Применение сложных эфиров на основе свойств. Жиры как сложные эфиры. Классификация жиров. Химиче-

ские свойства жиров: гидролиз и гидрирование жидких жиров. Применение жиров на основе свойств. Мыла.

- 31. Углеводы. Углеводы, их классификация: моносахариды (глюкоза, фруктоза), дисахариды (сахароза) и полисахариды (крахмал и целлюлоза). Глюкоза вещество с двойственной функцией альдегидоспирт. Химические свойства глюкозы: окисление в глюконовую кислоту, восстановление в сорбит, спиртовое брожение. Применение глюкозы на основе свойств. Значение углеводов в живой природе и жизни человека. Понятие о реакциях поликонденсации и гидролиза на примере взаимопревращений: глюкоза → полисахарид.
- 32. Амины. Понятие об аминах. Алифатические амины, их классификация и номенклатура. Анилин, как органическое основание. Получение анилина из нитробензола. Аминокислоты- физические и химические свойства. Полипептидная связь. Полимеры. Белки и полисахариды как биополимеры.
- 33. Пластмассы. Получение полимеров реакцией полимеризации и поликонденсации. Термопластичные и термореактивные пластмассы. Представители пластмасс. Волокна, их классификация. Получение волокон. Отдельные представители химических волокон.